
The Meat-axe and f -cyclic matrices

S. P. GLASBY

Abstract. Let M(d, F ) denote the algebra of d× d matrices over
a field F , and denote by mX(t) and cX(t) the minimal and the
characteristic polynomials of X ∈ M(d, F ). We call X an f -
cyclic matrix if f is an irreducible factor of mX(t) which does
not divide cX(t)/mX(t). We present a version of the Meat-axe
algorithm that uses f -cyclic matrices. One advantage of f -cyclic
matrices is that they unify and generalize previous work of Parker,
Holt and Rees, Ivanyos and Lux, Neumann and Praeger. The
greater abundance of f -cyclic matrices may lead to an improved
probability/complexity analysis of the Meat-axe. The difficulties
that occur when the Schur index exceeds one are explored.
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1. Introduction

LetA denote a finitely generated F -subalgebra of the algebra M(d, F )
of all d × d matrices over a field F . Computational representation
theory is concerned with the design, analysis and implementation of
algorithms for elucidating the geometric/algebraic structure of A. Two
basic geometric questions are: (1) Does A act irreducibly on the vector
space F d? If not, can a proper nonzero A-invariant subspace be found?
If A is known to act irreducibly on V := F d, then another basic question
is: (2) What is the space HomA(V,W ) of all A-homomorphisms from
V to an A-module W?
It is common to use the same name for different but related concepts.

Thus one may say that problems (1) and (2) are solved using the Meat-
axe algorithm. There are now a number of Meat-axe algorithms.
Versions [13], [3], [10, 11, 12], [4] are concerned with the case when
F is a finite field, and extensions such as [2, 14] consider certain
characteristic zero fields particularly F = Q, see also [9]. We shall
make a small step towards unifying and generalizing existing algorithms
with the goal of providing a better understanding of the complexity and
probability analysis of the Meat-axe.
Each version of the Meat-axe algorithm proves irreducibility by

selecting random matrices X ∈ A until one in a suitable subset S is
1
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found. The subset S varies with the version of the algorithm. Denote
by SP , SHR, SNP , and Sfc the subsets relevant to [13, 14], [3], [10,
11, 12], and the present paper respectively. Each subset comprises
certain X ∈ A for which the characteristic polynomial cX(t), and the
minimal polynomial mX(t) of X satisfy certain properties. Let SP be
the set of X ∈ A for which cX(t) has an unrepeated linear factor in
F [t], as in [13, 14]. Let SHR be the set of X ∈ A for which cX(t)
has an unrepeated irreducible factor (of arbitrary degree) in F [t], as
in [3]. Let SNP be the set of cyclic matrices in A, i.e. those for which
cX(t) = mX(t) as in [10, 11, 12]. In the present paper, Sfc comprises
the f -cyclic matrices in A (see the abstract or §2 for a definition).
The larger the subset S, the more likely that the Meat-axe will find
a suitable matrix X ∈ S. For the purpose of this discussion it is
important that Sfc properly contains SHR and SNP ; clearly SP ⊆ SHR.
Thus f -cyclic matrices unify existing work on the Meat-axe. We
shall prove a general version of Simon Norton’s irreducibility theorem
for f -cyclic matrices over an arbitrary field F . As SHR ∪ SNP ⊆ Sfc,
we hope that a more precise probabilistic analysis of the Meat-axe
algorithm can be given in the important case when F is a finite field.
Neumann and Praeger [10, 11, 12] have begun an extensive program
to better understand the complexity of, and probability analysis for,
the finite field Meat-axe using cyclic matrices. In [10] they show that
the proportion of X ∈ M(d,Fq) that are not cyclic is q−3 + O(q−4). It
appears that f -cyclic matrices are appreciably more abundant. For
example, when d = 3 the proportion of X that are not f -cyclic (for
any f) is q−4 + O(q−5), see §6. For larger d, this proportion is likely
even smaller.
Clever arguments in [3, 4] show that the Meat-axe will find, with

high probability, an invariant subspace in the case that A acts reducibly
and F is finite. As SHR ⊆ Sfc, it follows that an f -cyclic matrix version
of the Meat-axe will succeed in the reducible finite field case with at
least this probability. It is not hard to construct f -cyclic matrices that
do not lie in SHR or SNP . In the examples below X is (t− λ)-cyclic:
• X 6∈ SHR if cX(t) = mX(t) = (t− λ)2. If λ 6= µ ∈ F , then
• X 6∈ SNP if cX(t) = (t− λ)(t− µ)2 and mX(t) = (t− λ)(t− µ), and
• X 6∈ SHR∪SNP if cX(t) = (t−λ)2(t−µ)2 and mX(t) = (t−λ)2(t−µ).
It is desirable to develop a theory of module-splitting in the most

general (natural) setting. As the module-splitting problem subsumes
the polynomial factorization problem, it is natural to consider the
Meat-axe algorithm only for fields F where practical algorithms exist
for factoring polynomials into irreducibles. In practice, this presently
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means that F is either a finite field, or a relatively small degree exten-
sion of Q, see [1, 6]. Although in many of our examples F is galois
(even abelian) over its prime field, we shall not assume that this is so.
The paper is organized as follows. Notations and conventions are

described in §2. The vector spaces in this paper are always over a field,
although in §5 vector spaces over division rings are implicit. We take
particular care with left and right actions of both scalars and functions.
A generalization of Norton’s irreducibility theorem is given in §3. The
density of f -cyclic matrices in the image of blow-up monomorphisms
is considered in §§4-5. The density is close to 1 if the commuting
algebra is commutative, and is 0 otherwise. Some preliminary remarks
regarding the density of f -cyclic matrices in M(d, F ) are given in §6.

2. Conventions and Notation

The material in this section is known, or is part of the folklore. See
for example [16, 8, 3, 11]. As different conventions can be employed
with regards to left or right actions of scalars, functions and matrices we
shall explicitly state our conventions, and define our notation en route.
Not all of the remarks below hold when F is a division ring. As we
only need F to be a field, we can not justify the extra space required
to generalize to division algebras.
Let V denote the left F -vector space of 1×dmatrices over the field F .

View V as a right module for the ring M(d, F ) of d×d matrices over F .
We identify V ∗ = HomF (V, F ) with the right F -vector space of d × 1
matrices over F , and view V ∗ as acting on V on the right. Scalar
multiplication in V ∗ is defined by

(1) v(fλ) = (vf)λ (v ∈ V, f ∈ V ∗, λ ∈ F ).

Note that scalar multiplication in V ∗ satisfies f(λµ) = (fλ)µ. In
addition, V ∗ becomes a left M(d, F )-module where the M(d, F )-action
is via matrix multiplication.
Given u ∈ V and v∗ ∈ V ∗ we identify the 1×1 matrix uv∗ = [λ] with

the scalar λ. The bilinear form V × V ∗ → F defined by (u, v∗) 7→ uv∗

is nondegenerate. Thus for each basis v1, . . . , vd of V , there exists a
dual basis v∗1, . . . , v

∗
d of V ∗ satisfying viv

∗
j = δij. As usual, δij equals 1 if

i = j, and 0 otherwise. Abbreviate “is a subspace of” by ≤. If U ≤ V
and W ≤ V ∗, then U⊥ ≤ V ∗ and W⊥ ≤ V are defined by

(2) U⊥ = {v∗ ∈ V ∗ | Uv∗ = 0} and W⊥ = {v ∈ V | vW = 0}.

Then dimF (U
⊥) = d− dimF (U) and dimF (W

⊥) = d− dimF (W ).
Let U and V be left F -spaces. Then f ∈ HomF (U, V ) satisfies

(u1 + u2)f = u1f + u2f (λu)f = λ(uf) (λ ∈ F, u ∈ U).
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Make HomF (U, V ) a right F -space by defining f1 + f2 and fλ by

(3) u(f1 + f2) = uf1 + uf2 and u(fλ) = λ(uf) (u ∈ U).

Then EndF (V ) := HomF (V, V ) is an F -algebra. Given f ∈HomF (U, V )
and v∗ ∈ V ∗ define f ∗(v∗) ∈ U∗ by

(4) u(f ∗(v∗)) = (uf)v∗ (u ∈ U, f ∈ HomF (U, V ), v∗ ∈ V ∗).

If follows from Eq. (3) and (4) that

(5) f ∗(v∗1 + v∗2) = f ∗(v∗1) + f ∗(v∗2) and f ∗(v∗λ) = f ∗(v∗)λ

and hence f ∗ ∈ HomF (V
∗, U∗). Similarly Eq. (3) and (4) imply

f ∗
1 + f ∗

2 = (f1 + f2)
∗ and λf ∗ = (fλ)∗.

Hence HomF (V
∗, U∗) is a left F -space and EndF (V

∗) is an F -algebra.
Given bases (ui) for U and (vj) for V , we can define a matrix for

f ∈ HomF (U, V ). Assume that the matrix for f ∗ ∈ HomF (V
∗, U∗)

is relative to the bases (v∗j ) for V ∗ and (u∗
i ) for U∗. The following

calculation shows that the matrices of f and f ∗ are the same (not
transposed). Suppose that

uif =
∑

k

fikvk and f ∗v∗j =
∑

k

u∗
kf

∗
kj

where (fik), (f
∗
kj) ∈ M(d, F ) are uniquely determined. Using the equa-

tions uiu
∗
k = δik, vkv

∗
j = δkj and Eq. (4) gives

f ∗
ij = ui(

∑

k

u∗
kf

∗
kj) = ui(f

∗v∗j ) = (uif)v
∗
j = (

∑

k

fikvk)v
∗
j = fij .

If f ∈ HomF (U, V ) and g ∈ HomF (V,W ), then fg ∈ HomF (U,W ) is
composed from left to right, while f ∗g∗ ∈ HomF (W

∗, U∗) is composed
from right to left. Repeated use of Eq. (4) gives:

u((fg)∗(w∗)) = (u(fg))w∗ = ((uf)g)w∗ = (uf)(g∗(w∗))

= u(f ∗(g∗(w∗))) (u ∈ U,w∗ ∈ W ∗)

and hence (fg)∗ = f ∗g∗ holds. Thus EndF (V ) → EndF (V
∗) : f 7→ f ∗

is an F -algebra isomorphism. Moreover, the maps f 7→ (fij) and
f ∗ 7→ (f ∗

ij) define F -algebra isomorphisms from EndF (V ) and EndF (V
∗)

to M(d, F ). In our context neither map is an anti-isomorphisms, c.f.
[16].
We call e1, . . . , ed the standard basis for V . This basis has the

additional property that the dual basis e∗1, . . . , e
∗
d for V ∗ is also stan-

dard. Given a basis x1, . . . , xd for V , the transposed basis xT
1 , . . . , x

T
d

coincides with the dual basis x∗
1, . . . , x

∗
d for V ∗ if and only if XXT = I



THE Meat-axe AND f -CYCLIC MATRICES 5

where X denotes the matrix whose ith row is xi. The standard basis
has X = I.
Henceforth, A denotes an F -subalgebra of M(d, F ). Assume without

loss of generality that 1 ∈ A. Suppose that V is an A-module, and
U is an A-submodule of V . Then U⊥ is an A∗-submodule of V ∗.
(Since U(A∗U⊥) = (UA)U⊥ = UU⊥ = 0 by Eq. (4), it follows that
A∗U⊥ = U⊥.) Similarly, if W is an A∗-submodule of V ∗, then W⊥ is
an A-submodule of V .
Fix a matrix X ∈ M(d, F ). It is standard, c.f. [7], to view V as a

right F [t]-module where scalar multiplication is defined by

vf(t) = vf(X) (v ∈ V, f(t) ∈ F [t]).

Alternatively, V may be viewed as a right F [X]-module where

F [X] := {f(X) | f(t) ∈ F [t]}

is isomorphic to the quotient ring F [t]/mX(t)F [t]. (If F were a non-
commutative division ring, then F [X] need not be closed under multi-
plication, as F need not commute with X.)
Theminimal polynomial of anX-invariant subspace U of V is defined

to be the minimal polynomial of the restriction X|U , i.e. mX|U(t). The
minimal polynomial of the cyclic subspace uF [X] is also called the order
polynomial of the vector u ∈ V . It is important in the sequel that V

is an internal direct sum V = V1

.

+ · · ·
.

+ Vr where each Vi = viF [X] is
cyclic, and di+1 divides di for 1 ≤ i < r where di(t) = mX|Vi

(t) is the
order polynomial of vi. The characteristic polynomial and the minimal
polynomials of X are cX(t) = d1(t)d2(t) · · · dr(t) and mX(t) = d1(t)
respectively.

Definition. A matrix X ∈ M(d, F ) is called f -cyclic if f(t) ∈ F [t] is a
monic irreducible divisor of mX(t) that does not divide cX(t)/mX(t).

Put differently, X is f -cyclic if and only if f divides cX(t) and mX(t)
with the same (positive) multiplicity. It is clear, therefore, that a cyclic
matrix X is f -cyclic for all irreducible divisors f of mX(t). Also, if f
is an unrepeated irreducible factor of cX(t), then X is f -cyclic. In
summary, SNP ∪ SHR ⊆ Sfc.
Let mX(t) =

∏

fµ(f) be the factorization of mX(t) as a product of
powers of distinct monic irreducible polynomials f ∈ F [t]. We may

write V =
.

+V (f) where the sum is over monic irreducible divisors f of
mX(t), and where the f -primary submodule, V (f), of V has minimal
polynomial mX|V (f)(t) = f(t)µ(f). It is clear that X is f -cyclic if and
only if V (f) is a cyclic F [X]-submodule, and X is cyclic if and only
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if V (f) is a cyclic F [X]-submodule for each irreducible divisor f of
mX(t).
Finally, we define the kernel and image of X and X∗:

kerV X = {v ∈ V | vX = 0}, imVX = {vX | v ∈ V } = V X,

kerV ∗ X∗ = {v∗ ∈ V ∗ | X∗v∗ = 0}, imV ∗X∗ = {X∗v∗ | v∗ ∈ V ∗}.

3. Norton’s Irreducibility Theorem

The following lemma is used to prove a version of Norton’s irre-
ducibility theorem for f -cyclic matrices.

Lemma 1. Let X ∈ M(d, F ) be an f -cyclic matrix. Then

(a) kerV f(X) = imV g(X) where g(t) = mX(t)/f(t), and
(b) the restriction Y of X to kerV f(X) has cY (t) = mY (t) = f(t).

Proof. (a) Using the notation at the end of §2, V = V1

.

+ · · ·
.

+Vr where
Vi = viF [X] is cyclic, and the di := mX|Vi

(t) satisfy dr| · · · |d2|d1. Since
X is f -cyclic, f divides both mX(t) = d1 and cX(t) = d1d2 · · · dr with
the same multiplicity. As f is irreducible, it is coprime to d2, . . . , dr.
Since 0 = mX(X) = g(X)f(X), it follows that imV g(X) ⊆ kerV f(X).
Conversely, let

v = v1h1(X) + v2h2(X) + · · ·+ vrhr(X) ∈ kerV f(X)

where h1, h2, . . . , hr ∈ F [t]. Then vf(X) = 0 implies vihi(X)f(X) = 0
for each i. If i > 1, then di divides hif and hence di divides hi. A
similar argument shows that d1 divides h1f , and hence h1 = k1g for
some k1 ∈ F [t]. In summary, v = v1k1(X)g(X) ∈ imV g(X). Thus
kerV f(X) ⊆ imV g(X), and equality obtains.
(b) Let Y be the restriction of X to imV g(X). By part (a), di|g for

i > 1, and hence Vig(X) = 0 for i > 1. Thus imV g(X) = V1g(X) is
cyclic generated by v1g(X). Since v1g(X) 6= 0 and v1g(X)f(X) = 0,
we see that cY (t) = mY (t) = f as desired. �

The following theorem is influenced by [3] and [11].

Theorem 2. Let A be an F -subalgebra of M(d, F ). Suppose X ∈ A is

f -cyclic, and

(a) there exists v ∈ kerV f(X) such that vA = V , and

(b) there exists v∗ ∈ kerV ∗ f(X∗) such that A∗v∗ = V ∗.

Then V is an irreducible right A-module, and V ∗ is an irreducible left

A∗-module.
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Proof. Let U be a proper A-submodule of V . We shall prove that
U = {0} is the zero subspace. By Lemma 1(b), kerV f(X) is an
irreducible F [X]-submodule. As U ∩ kerV f(X) is an F [X]-submodule
of kerV f(X), it equals {0} or kerV f(X). The latter does not happen as
by assumption (a), v ∈ kerV f(X) satisfies V = vA ⊆ U , contradicting
the fact that U is proper. Therefore U ∩ kerV f(X) = {0}, and
so Uf(X) = U . By Eq. (4), U(f(X)∗v∗) = (Uf(X))v∗, and by
assumption (b), f(X∗)v∗ = 0. Therefore

0 = U0 = U(f(X∗)v∗) = U(f(X)∗v∗) = (Uf(X))v∗ = Uv∗.

Hence v∗ ∈ U⊥. The condition A∗v∗ = V ∗ implies that U⊥ = V ∗, and
hence that U = {0}. This proves that V is an irreducible A-module.
The fact that V ∗ is an irreducible left A∗-module follows by considering
perpendicular subspaces of A∗-submodules of V ∗. �

Theorem 2 suggests the following procedure:

f-cyclic irreducibility procedure.

Input. A finitely generated F -subalgebra A of M(d, F ).

Output. A boolean value for IsIrreducible.

1. Choose a random X ∈ A until an f -cyclic matrix is found.
2. Find 0 6= v ∈ kerV f(X). If vA 6= V , then IsIrreducible :=False,

and stop.
3. Find 0 6= v∗ ∈ kerV ∗ f(X∗). If A∗v∗ 6= V ∗, then IsIrreducible is

set False, and stop.
4. IsIrreducible := True, and stop.

It is clear that this procedure terminates correctly when it does
terminate: it correctly returns False in Steps 2 or 3, and correctly
reports True in Step 4 by Theorem 2. Unfortunately, it may fail
to find an f -cyclic X ∈ A in Step 1. This can happen when A acts
reducibly, for example when V is a direct sum of isomorphic irreducible
A-submodules. In this case no X ∈ A is f -cyclic, and Step 1 fails to
terminate. One solution to this conundrum is to recast our procedure
along the lines of [3].

f-cyclic Meat-axe procedure.

Input. A finitely generated F -subalgebra A of M(d, F ).

Output. A boolean value for IsIrreducible, and a witness.

1. Choose a random X ∈ A.
2. For each irreducible factor f of cX(t) do
2a. Select a random 0 6= v ∈ kerV f(X). If vA 6= V , then
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IsIrreducible := False; Witness := vA; and stop.
2b. Select a random 0 6= v∗ ∈ kerV ∗ f(X∗). If A∗v∗ 6= V ∗, then

IsIrreducible := False; Witness := A∗v∗; and stop.
2c. If X is f -cyclic, then IsIrreducible := True; set Witness to

be (X, f, v, v∗); and stop.
3. Return to Step 1.

According to Knuth [5, pp. 4–6] and algorithm is a definite sequence
of instructions which terminates after finitely many steps with prov-
ably correct output. This definition is arguably too restrictive. It
is somewhat awkward to describe [6, p. 748, p. 751] a Las Vegas
algorithm or a Monte Carlo algorithm as a “computational method”
or “procedure” because these do not satisfy the strict definition of an
algorithm. In this paper a Monte Carlo algorithm is a definite sequence
of instructions involving random selections which terminates with high

probability yielding output that is with high probability provably correct.
More precisely, given real numbers ε1, ε2 satisfying 0 < ε1, ε2 < 1
there is a number N depending on ε1, ε2 and the size of the input,
such that if N random selections are made then the probabilities of
non-termination, and of incorrect termination, are at most ε1 and ε2
respectively. A Las Vegas algorithm is defined similarly except that
when it terminates, it terminates correctly. Knuth’s definition [5,
pp. 4–6] of an algorithm essentially has ε1 = ε2 = 0, while a Las
Vegas algorithm has ε2 = 0.
In the case that F is finite, and Berlekamp’s algorithm [6, p. 441] or

the Cantor-Zassenhaus Las Vegas algorithm [6, p. 447] is used to factor
cX(t), then our f -cyclicMeat-axe procedure is a Las Vegas algorithm.
If A is irreducible, then it follows from [3, 10] (as SHR∪SNP ⊆ Sfc) that
an f -cyclic X ∈ A will be found with high probability after N random
selections, and hence IsIrreducible will be correctly set True. If
A is reducible, then it follows from [3, 4] that with high probability a
proper nonzero subspace will be found in Step 2a or 2b after N random
selections.
Another solution to the conundrum of non-termination of the f -

cyclic irreducibility procedure is to recast it as a Las Vegas algorithm for
proving irreducibility. If F is finite and A is irreducible, then it follows
from [11, 12] (as SNP ⊆ Sfc) that the procedure will correctly, and
likely, set IsIrreducible to be True. That is, incorrect termination
is impossible, and the probability of non-termination can be made
arbitrarily small by choosing N sufficiently large. The case when F is
infinite, however, presents a challenge to both of the above procedures.
The example at the end of §5 shows that A can be irreducible and yet no
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X ∈ A is f -cyclic. In the case that F is finite it was correct to view non-
termination of the f -cyclic irreducibility procedure as evidence that A
is reducible, however, it is more complicated when F is infinite.
The selection of a random X ∈ A implies the existence of a proba-

bility measure on A. If F is finite, then it is natural to use the uniform
measure on A where the probability of selecting any matrix is |A|−1. If
F is infinite, then so is A, and the choice of a probability measure on
A is less obvious.
It is not the purpose of this paper to study the complexity of, and

probability analysis for, these procedures. This would require very
careful statements of our assumptions, and the analysis depends heavily
on whether or not F is infinite. We shall however, make progress in §§4–
5 towards understanding the conditional probability that an f -cyclic
X ∈ A is not found after N selections, given that A is irreducible.

4. Blowing up fields

By the Wedderburn-Artin structure theorem [8] for rings, A/rad(A)
a direct sum of semisimple rings, and if A is simple then A ∼= M(r,D)
where D is a division algebra over F .
Let D denote a division ring, and let F be a subfield of finite index of

the center of D. Choose a basis for D over F , and let φ and Φ denote
the corresponding blow-up monomorphisms

φ : D → M(|D : F |, F ) and Φ: M(r,D) → M(r|D : F |, F ).

In §§4-5 we consider the density of f -cyclic matrices in imΦ. Let E
denote a maximal subfield of D. In this section D = E, and the
proportion of X ∈ M(r,D) such that Φ(X) is f -cyclic is close to 1, see
Theorem 4. In §5, D 6= E holds, and the above proportion is 0.
The finite extension E : F may be assumed to be separable by [16,

Theorem 7.15]. (In the cases of most interest to us, namely when
F is finite or of characteristic zero, each maximal subfield E of D is
obviously separable over F .) To simplify our exposition, we shall make
the stronger assumption that E : F is galois. Our results generalize
readily to the finite separable case, as outlined later.
Given f ∈ E[t] and σ ∈ G := Gal(E/F ), denote by σ(f) the

polynomial obtained by applying σ to the coefficients of f . Define
maps L,N : E[t] → F [t] by

L(f) = lcm{σ(f) | σ ∈ G} and N(f) =
∏

σ∈G

σ(f).
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The map L may not have a standard name, however, N is called the
norm map from E[t] to F [t]. If the domains or codomains of L,N are
ambiguous, we write LE/F and NE/F .

Lemma 3. Let E : F be a finite galois extension with group G. Let

f, f1, f2 ∈ E[t] be monic polynomials. Then

(a) L(σ(f)) = L(f) and N(σ(f)) = N(f) for σ ∈ G.

(b) L(f), N(f) ∈ F [t] and L(f) divides N(f).
(c) If f ∈ E[t] is irreducible, then L(f) ∈ F [t] is irreducible and

N(f) = L(f)|E:F (f)| where F (f) is the field generated by F and

the coefficients of f .
(d) Let f1, f2 ∈ E[t] be irreducible. The following are equivalent:

(1) gcd(L(f1), L(f2)) 6= 1,
(2) L(f1) = L(f2), and
(3) σ(f1) = f2 for some σ ∈ G.

(e) N(f1)N(f2) = N(f1f2) and lcm{L(f1), L(f2)} divides L(f1f2).
(f) If f ∈ E[t] is irreducible, then L(fn) = L(f)n for n ∈ Z, n ≥ 0.

Proof. Parts (a) and (b) are clear. Let g ∈ F [t] be an irreducible
divisor of L(f) where f |g. Since σ(f)|σ(g) and σ(g) = g, it follows
that L(f)|g, and hence L(f) = g. Let {f1, f2, . . . fr} be the orbit
of f under G. For each i, there are |E : F (f)| choices for σ ∈ G
such that σ(f) = fi, and hence N(f) = L(f)|E:F (f)|. This proves (c).
Part (1) implies part (2) by (c). Also (2) implies (3) by comparing
factorizations in E[t]. Finally (3) implies f2 divides L(f1) and L(f2),
and this implies (1). This proves (d). The multiplicative property of
N follows from σ(f1f2) = σ(f1)σ(f2). Since f1|L(f1f2) it follows that
L(f1)|L(f1f2). Similarly, L(f2)|L(f1f2) and hence lcm{L(f1), L(f2)}
divides L(f1f2). This proves (e). Finally, part (f) follows as the orbits
of f and fn under G are {f1, f2, . . . fr} and {fn

1 , f
n
2 , . . . f

n
r }. �

We need a stronger result than [10, Corollary 5.2] in order to deal
with f -cyclic matrices.

Theorem 4. Let E : F be a finite galois extension with group G, and

let Φ: M(r, E) → M(r|E : F |, F ) be a blow-up monomorphism. Then

(a) mΦ(X)(t) = L(mX(t)) and cΦ(X)(t)=N(cX(t)) for X ∈ M(r, E).
(b) Φ(X) is g-cyclic for some irreducible divisor g∈F [t] of mΦ(X)(t)

if and only if X is f -cyclic where f := gcd(g,mX(t)) is irre-

ducible in E[t].

Proof. (a) As mΦ(X)(X) = 0, it follows that mX(t) and thus L(mX(t))
divides mΦ(X)(t). Conversely, L(mX(t)) ∈ F [t] and L(mX(Φ(X))) = 0.
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Hence mΦ(X)(t) divides L(mX(t)), and so equality holds, c.f. [10,
Lemma 5.1]. See [16,Theorem 9.10] for a proof that cΦ(X)(t)=N(cX(t)).

(b) Let cX(t) =
∏

f c(f) and mX(t) =
∏

fm(f) be the factorizations
of cX(t) and mX(t) as a product of powers of distinct monic irreducible
polynomials in E[t]. Let cΦ(X)(t) =

∏

gC(g) and mΦ(X)(t) =
∏

gM(g)

be corresponding factorizations in F [t]. By Lemma 3(c,d,e)

C(g) =
∑

{c(f) | L(f) = g} and M(g) = max{m(f) | L(f) = g}.

Assume that Φ(X) is g-cyclic, equivalently that C(g) = M(g). Using
the above displayed equation and c(f) ≥ m(f), there is only one
irreducible divisor f of mX(t) such that L(f) = g, and for this divisor
c(f) = m(f). Therefore, X is f -cyclic and f |g. This proves the ‘if’ part
of (b), the ‘only if’ part is proved by reversing the above arguments. �

Theorem 4(b) may be rephrased: X is f -cyclic and

(6) gcd(L(f),mX(t)) = f

holds if and only if Φ(X) is L(f)-cyclic. Eq. (6) holds if and only if
gcd(σ(f),mX(t)) = 1 for 1 6= σ ∈ G, c.f. [10, Corollary 5.2].
We return to our weaker assumption that E : F is finite and separa-

ble. There is a finite extension K of E which is galois over F , see [17].
If m = |E : F |, then there are m monomorphisms, say σ1, . . . , σm,
from E into K. For each i, there are precisely |K : E| automorphisms
σ ∈ Gal(K/F ) such that the restriction σ|E equals σi. Given f ∈ E[t]
define the maps L,N : E[t] → F [t] as follows:

LE/F (f) = lcm{σ1(f), . . . , σm(f)} and NE/F (f) = σ1(f) · · · σm(f).

The connection between LE/F , NE/F and LK/F , NK/F is

LK/F (f) = LE/F (f) and NK/F (f) = NE/F (f)
|K:E|.

With the preceding remarks, Lemma 3 and Theorem 4 can be gener-
alized by replacing “galois” by “separable”. Minor modifications are
required to the statements and proofs. For example, σ ∈ G becomes
σ ∈ Gal(K : F ) where K is the galois closure of E : F . The details are
left to the reader. Compare with [16, Exercise 9.4].
The density of f -cyclic matrices X ∈ M(r, E) such that Φ(X) is

L(f)-cyclic in the case that |F | = q is finite, is at least the density
given in [10, 12] because cyclic matrices are f -cyclic for each f . The
density in the cyclic case is at least 1−q−1+O(q−2). A stronger bound
exists when |E : F | > 2 see [10, Theorem 5.5]. While the density of
f -cyclic matrices in im(Φ) exceeds the density of cyclic matrices, it is
unclear whether or not higher powers of q−1 are involved for most r, E.
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5. Blowing up division rings

Now consider the case when D is a noncommutative division al-
gebra with center F of finite index. Let E be a maximal subfield
of D containing F . Then |D : E| = |E : F | = m is the (Schur)
index of D, and m > 1 as D 6= E. Let φ be a blow-up monomor-
phism φ : D → M(m2, F ), and define Φ: M(r,D) → M(rm2, F ) by
Φ((λij)) = (φ(λij)). Our main result is:

Theorem 5. No element of Φ(M(r,D)) is f -cyclic. Indeed, mY (t)
m

divides cY (t) for each Y = Φ(X) ∈ im(Φ).

Proof. Set A := Φ(M(r,D)), B := M(rm2, F ), and C := CB(A) where
CB(A) is the centralizer in B of A. We shall prove first that C ∼= Dop.
Consider the product AC of subrings of the ring B. Then AC is a

subring of B whose elements are finite sums
∑

aici, where ai ∈ A,
ci ∈ C. Recall that an F -algebra A is called central if its center
equals {λ1 | λ ∈ F}. Accordingly, A and B are central simple F -
algebras. By [8, Theorem 4.7], B ∼= A ⊗F C. The map A ⊗F C → B
defined by

∑

ai⊗ ci →
∑

aici is a homomorphism whose image is AC.
Since A ⊗F C ∼= B is simple, the homomorphism is injective. Hence
A⊗F C ∼= AC and B = AC.
By [8, Theorem 4.6], D⊗Dop ∼= M(m2, F ), and hence the centralizer

of φ(D) in M(m2, F ) is isomorphic to Dop. Therefore the centralizer C
of A in B contains a subring isomorphic to Dop. However,

(7) |C : F | =
|B : F |

|A : F |
=

(rm2)2

r2m2
= m2 = |Dop : F |.

It follows from Dop ⊆ C and Eq. (7) that C ∼= Dop as desired.
We view M(r,D) as a subring of M(r|D : E|, E) by blowing up over

E (rather than over F ). The center of M(r|D : E|, E) comprises scalar
matrices over E, and thus we may view E as a subring of C. Let
λ1, . . . , λm be a basis for C as a left E-space. Then

C = Eλ1

.

+ · · ·
.

+ Eλm and B = AC = AEλ1

.

+ · · ·
.

+ AEλm.

Thus V = V B = V1

.

+ · · ·
.

+Vm where Vi = V AEλi is a right A-module.
(Note that Eλi ⊆ C ∼= Dop and A commutes with Eλi.) The map
Vi → Vj defined by v 7→ vλ−1

i λj is an A-module isomorphism. We view

each Vi as an F -space. For X ∈ A we write X = X1

.

+ · · ·
.

+ Xm

where Xi is the restriction of X to Vi. Accordingly, the minimal
polynomial mXi

(t) lies in F [t] (and not E[t]) and mX(t) = mX1
(t)

because mX1
(t) = mXi

(t) for i = 1, . . . ,m. Since cX(t) = cX1
(t)m

and mX1
(t) divides cX1

(t), it follows that cX(t) = h(t)mmX(t)
m where
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h(t) = cX1
(t)/mX1

(t) ∈ F [t]. As m > 1, this proves that no element of
A is f -cyclic. �

Using the terminology of [16, §9a], cX1
(t) is the reduced characteristic

polynomial of X ∈ A. The proof of Theorem 5 gives alternate proofs
of Theorems 9.3 and 9.5 in [16].
Theorem 5 shows that the procedures in §3 both fail to find an f -

cyclic matrix when V is irreducible and D := EndA(V ) is noncommuta-
tive. This is surprising for the following reason. A heuristic argument
in [10, §1] shows that almost all matrices in M(d, F ) with F ⊆ C

are separable, and hence f -cyclic. If im(Φ) were randomly spread
throughout M(rm2, F ), then we would expect that almost all matrices
in im(Φ) are f -cyclic, contrary to Theorem 5. Thus special care must be
taken as the image and codomain of Φ have vastly different densities of
f -cyclic matrices. Indeed, as SP ⊆ Sfc, Parker’s Meat-axe algorithm
[14] also fails to terminate when V is irreducible and D := EndA(V )
is noncommutative.
We construct an example with m > 1. Let F be a subfield of the real

numbers R, and let D be the quaternion algebra over F with elements

λ = λ0 + λ1i+ λ2j + λ3ij (λ0, λ1, λ2, λ3 ∈ F )

where i2 = j2 = (ij)2 = −1. Consider the blow-up monomorphism

φ : D → M(4, F ) defined by φ(λ) =









λ0 λ1 λ2 λ3

−λ1 λ0 −λ3 λ2

−λ2 λ3 λ0 −λ1

−λ3 −λ2 λ1 λ0









relative to the F -basis 1, i, j, ij. Set λ∗ = λ0 − λ1i − λ2j − λ3ij, and
define fλ(t) by

fλ(t) = (t− λ)(t− λ∗) = t2 − 2λ0t+ (λ2
0 + λ2

1 + λ2
2 + λ2

3) ∈ F [t].

Then cφ(λ)(t) = fλ(t)
2. As fλ(t) has discriminant −4(λ2

1+λ2
2+λ2

3) ≤ 0,
we see mφ(λ)(t) = fλ(t) is irreducible if λ 6= λ∗, and mφ(λ)(t) = t − λ0

if λ = λ∗. In either case, mφ(λ)(t)
2 divides cφ(λ)(t), and φ(D) contains

no f -cyclic matrices.

6. Proportions of f-cyclic matrices

In this section we compare the proportion of X ∈ M(3,Fq) that are
f -cyclic with the proportion that are cyclic.
There are three types of matrix X ∈ M(3,Fq) that are not cyclic.

These are listed below according the the values of cX(t) and mX(t).
The first two types are not f -cyclic, while the third is (t − µ)-cyclic.
Set G := GL(3,Fq). Then
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cX(t) (t− λ)3 (t− λ)3 (t− λ)2(t− µ) λ 6= µ
mX(t) (t− λ)2 t− λ (t− λ)(t− µ)
|CG(X)| q2(q − 1)2 |G| (q2 − 1)(q2 − q)(q − 1)

|G : CG(X)| (q3 − 1)(q + 1) 1 q2(q2 + q + 1)
#cX(t) q q q(q − 1)

The dot product of the last two rows is the number of non-cyclic
matrices in M(3,Fq), namely q6 + q5 + q4− q3 − q2. By comparison the
number of non-f -cyclic matrices is q5 + q4 − q2. Hence the density of
cyclic matrices and f -cyclic matrices is respectively

1− q−3 − q−4 − q−5 + q−6 + q−7 and 1− q−4 − q−5 + q−7.

Although it appears that the density of f -cyclic matrices in M(d,Fq)
may increase [15] as a function of d, it is unclear at this stage whether
or not an f -cyclic Meat-axe algorithm will be more efficient than a
cyclic Meat-axe algorithm.
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