
Writing projective representations over subfields

S.P. Glasby, C.R. Leedham-Green and E.A. O’Brien

Abstract

Let G = 〈X〉 be an absolutely irreducible subgroup of GL(d, K), and let F be
a proper subfield of the finite field K. We present a practical algorithm to decide
constructively whether or not G is conjugate to a subgroup of GL(d, F).K×,
where K× denotes the centre of GL(d,K). If the derived group of G also acts
absolutely irreducibly, then this algorithm is Las Vegas and costs O(|X|d3 +
d2 log |F |) arithmetic operations in K. This work forms part of a recognition
project based on Aschbacher’s classification of maximal subgroups of GL(d, K).

1 Introduction

Let F < K be finite fields. One of the classes of maximal subgroups of GL(d,K) in
Aschbacher’s classification theorem [1] is the set of conjugates of GL(d, F).K×, where
K× denotes the centre of GL(d,K).

The matrix recognition project [10] seeks to develop a practical algorithmic version
of this classification. As one component, we present an algorithm that takes as input a
subset X of GL(d,K) and decides constructively whether or not G := 〈X〉 is conjugate
to a subgroup of GL(d, F).K×. If so, we obtain a conjugating matrix.

If we assume that G′ acts absolutely irreducibly on the given KG-module, then
we obtain a provably efficient algorithm which runs in polynomial time. An easy
application of Clifford theory shows that if G is primitive, tensor-indecomposable, and
not semilinear, then this hypothesis is satisfied.

If G acts absolutely irreducibly but G′ does not, then the situation is more compli-
cated. We present a simple practical algorithm to deal with this more general case. We
also develop one illustrative component of a provably efficient algorithm based on an
analysis of this situation following Clifford’s theorem: the case where G′ acts absolutely
irreducibly on a block in a system of imprimitivity fixed by G′.

Underpinning our work is a new and highly efficient algorithm which solves the fol-
lowing special case of the more general problem: given an absolutely irreducible group

We thank Bill Kantor and Cheryl Praeger for their criticisms of drafts of this paper. This work
was supported in part by the Marsden Fund of New Zealand via grant UOA 412. 2000 Mathematics
Subject Classification. Primary 20C20, 20C40.

1

G ≤ GL(d,K), decide whether or not G is conjugate to a subgroup of GL(d, F). This
algorithm, which incorporates ideas from the MeatAxe [7], has Las Vegas complexity
approximately O(d3) field operations in K; for a more precise statement see Theorem
2.1.

Glasby & Howlett [6] present an algorithm to answer this special case, which has
similar complexity, given an oracle to construct discrete logarithms in F . For a de-
scription of discrete logarithm algorithms, see [15, Chapter 4]. Our algorithm avoids
the use of the discrete logarithm, and hence its performance is demonstrably better if
F is “large”.

We summarise our notation. Throughout GF(q) = F < K = GF(qe) are finite
fields, and G ≤ GL(d,K) for some fixed d > 1. Also, M(d,K) denotes the K-algebra
of d× d matrices over K, and F [G] denotes the F -subalgebra of M(d,K) spanned by
G. If G is conjugate to a subgroup of GL(d, F) we say that G can be written over
F . If G is conjugate to a subgroup of GL(d, F).K×, where K× denotes the centre of
GL(d,K), we say that G can be written over F modulo scalars in K.

We may view V := Kd either as a module over the group algebra KG, or over the
enveloping algebra K[G] ⊆ M(d,K). Note that G can be written over F if and only if
the KG-module V has an FG-submodule of F -dimension d.

The organisation of the paper is as follows. In Section 2 we state our main results.
In Section 3 we present our new algorithm to decide whether or not G can be written
over F . In Section 4 we consider the case where the derived group G′ acts absolutely
irreducibly and, in this case, we present a provably efficient algorithm to decide whether
or not G can be written over F modulo scalars in K. In Sections 5 and 6 we consider
the general case where G′ does not act absolutely irreducibly. We first outline a simple
backtrack algorithm to decide whether or not G can be written over F modulo scalars
in K. Next we analyse (following Clifford’s theorem) the case where G′ acts absolutely
irreducibly on a block in a system of imprimitivity fixed by G′. Finally, we report on
the performance of an implementation in Magma [2].

2 The main results

Our aim is to describe and analyse algorithms to decide whether or not an absolutely
irreducible subgroup G of GL(d,K) can be written over F modulo scalars in K. Our
first result is the following.

Theorem 2.1 There is a Las Vegas algorithm that takes as input the finite fields F <
K, and an absolutely irreducible group G := 〈X〉 ≤ GL(d,K), and decides in O(|X|d3)
field operations in K, plus O∼(d log |F |) field operations in F , whether or not G is
conjugate to a subgroup of GL(d, F). If so, then a conjugating matrix is returned;
otherwise false is returned.

That the algorithm is Las Vegas reflects the fact that random elements of F [G]
are used. Other relevant algorithms – including the critical MeatAxe [7] – rely on

2

the use of such random elements. In Section 3, we prove that the probability that
any random element of F [G] will cause the algorithm to terminate is greater than an
absolute constant. In practice, “low-quality” random elements of F [G] will suffice and
we assume that they can be obtained in O(d3) field operations in K.

The algorithm takes O(d3) field operations in K and O∼(d log q) field operations in
F to find the required change-of-basis matrix – namely, a basis for an FG-module V0

that spans V as K-space; and O(|X|d3) field operations in K to conjugate the given
generators by the change-of-basis matrix.

Our second main result is the following.

Theorem 2.2 There is a Las Vegas algorithm that takes the same input as the algo-
rithm in Theorem 2.1, but with the additional assumption that G′ acts absolutely irre-
ducibly on the given KG-module V ; if G is conjugate to a subgroup of GL(d, F)K×, it
returns a conjugating matrix, or otherwise returns false. This algorithm has the same
complexity as the algorithm in Theorem 2.1.

As far as the matrix recognition project is concerned, Theorem 2.2 suffices. How-
ever, one may wish to write G over F (possibly modulo scalars in K) when G acts
absolutely irreducibly, but G′ does not. We generalise the algorithm of Theorem 2.2
in two ways. Firstly we observe that it suffices, for the algorithm in Theorem 2.1 to
produce a positive answer, that we find for each g ∈ X a scalar kg ∈ K× such that if
g is replaced by kgg then the resulting set generates a group that can be conjugated
into GL(d, F). We find such scalars by considering the elements of X in turn, and then
carry out a backtrack search through all possible scalars. We can restrict the choice of
scalars significantly as we discuss in Section 5. In many cases little or no backtracking
is needed.

The second approach is to use Clifford’s theorem to analyse the structure of the
given KG-module V . This analysis becomes complicated, and raises questions that
appear to us to be rather unnatural. For example, it may turn out that G′ acts
irreducibly but not absolutely irreducibly on V , in which case we could write G′ in
smaller dimension over a field L properly containing K. Suppose that |L| = qef , where
gcd(e, f) = 1. Then L ∼= K⊗F L0 where L0 = GF (qf). We now have to decide whether
or not a given LG′-module can be written over L0 modulo scalars in K. Additional
complications arise when G′ consists entirely of scalars, so that Clifford’s theorem
cannot be usefully applied to G′. In Section 6 we illustrate this analysis when G′ does
not consist of scalars, and acts absolutely irreducibly on the homogeneous components
of V , regarded as a KG′-module.

3 Writing G over F

We now prove Theorem 2.1 by presenting the relevant algorithm. Recall that G acts
absolutely irreducibly on V = Kd. Underpinning the algorithm is the simple observa-
tion that, as with the question of reducibility, this problem can be set in the context

3

of algebras rather than groups. Namely, if G can be written over the smaller field F ,
then so can the F -algebra F [G].

The relevant algorithm is the following.

1. Repeatedly select a random a ∈ F [G] until either the characteristic polynomial
ca(t) of a does not lie in F [t], or until ca(t) ∈ F [t] and a has an eigenvalue λ ∈ F
with multiplicity 1. In the former case return false, and in the latter proceed to
the next step.

2. Find a non-zero λ-eigenvector v for a.

3. Construct sufficient images of v under the action of G to obtain a basis B of V .

4. Write the given generators of G with respect to the basis B, and return false
if one does not lie in M(d, F). Otherwise return the conjugating matrix with
rows B.

The algorithm relies on the following two theorems.

Theorem 3.1 Let G be an absolutely irreducible subgroup of GL(d,K), and let F be a
subfield of K. There is a subfield L of K containing F such that F [G] is conjugate in
GL(d,K) to the full matrix algebra M(d, L). Hence G can be written over L, but not
over any proper subfield of L containing F .

Proof: Since F [G] is a simple F -algebra, Wedderburn’s structure theorem [5,
p. 171] implies that F [G] ∼= M(d′, L) where L is a division algebra. Since L is fi-
nite, L is a field by another theorem of Wedderburn. Moreover, F ⊆ Z(M(d′, L)) ⊆
CM(d,K)(F [G]) = K. Therefore L = Z(M(d′, L)) satisfies F ⊆ L ⊆ K. Since Kd is an
absolutely irreducible K[G]-module, K[G] = M(d,K) and so

M(d′, K) ∼= M(d′, L)⊗F K = F [G]⊗F K ∼= K[G] = M(d,K).

Thus d = d′. By a generalization of the Skolem-Noether theorem [5, Theorem 4.9],
the isomorphism F [G] ∼= M(d, L) is induced by an inner automorphism of M(d,K).
Therefore F [G] can be written over L, but not over any proper subfield of L containing
F . 2

Theorem 3.2 Let F be a proper subfield of a finite field L, and let a be a uniformly
random element of M(d, L). Then the probability, π, that ca(t) := det(tI − a) does not
lie in F [t] satisfies π > 2

3
(1− (|F |/|L|)d) ≥ 1/2.

Proof: Let f(t) ∈ L[t] be a monic polynomial of degree d, and let nf denote
the number of a ∈ M(d, L) such that ca(t) = f(t). An empirical observation is that
nf ≈ ng if f(t), g(t) ∈ L[t]. Hence π is approximately 1 − (|F |/|L|)d. We shall make
this argument rigorous.

4

Recall from [12] that a ∈ M(d, L) is cyclic if Ld is cyclic as an L〈a〉-module. Fix a
monic polynomial f(t) ∈ L[t]− F [t] of degree d. By [12, p. 267]

Prob(a is cyclic and ca(t) = f(t)) ≥ |GL(d, L)|
|M(d, L)|

1

|L|d − 1
.

Since |L| > |F |, it follows that |L| ≥ 4. Thus

|GL(d, L)|
|M(d, L)|

=
d∏

i=1

(1− |L|−i) >

∞∏
i=1

(1− 4−i) >
2

3
.

Since there are |L|d − |F |d choices for f(t), we conclude that

π := Prob(ca(t) 6∈ F [t]) >

(
2

3

)
|L|d − |F |d

|L|d − 1
>

2

3
[1− (|F |/|L|)d]. 2

We now consider the correctness and complexity of our algorithm. By Theorem 3.1,
F [G] is isomorphic to the full matrix algebra M(d, L) where L is a field satisfying
F ⊆ L ⊆ K. Suppose that, for some λ ∈ F , a ∈ F [G] has a λ-eigenspace 〈v〉 that
is of dimension 1 over K. The module vF [G] is a direct sum, say V1 u V2 u · · · u Vr,
of irreducible submodules each isomorphic to Ld. Suppose that v = v1 + v2 + · · ·+ vr

where vi ∈ Vi. Since v 6= 0, one of the vi, without loss of generality v1, is nonzero. Now
va = λv implies that via = λvi for each i. Since the λ-eigenspace of a is 1-dimensional,
there exist scalars ξi ∈ K such that vi = ξiv1. Therefore v = (1 + ξ2 + · · ·+ ξr)v1 and
it follows that vF [G] equals µV1 where µ = 1 + ξ2 + · · · + ξr. This shows that r = 1
and vF [G] is an irreducible M(d, L)-module.

Consider Step (1) of our algorithm. If L 6= F , then G cannot be written over F , and
this can be detected with high probability by Theorem 3.2. It follows from [7, Section
2.3] that the probability that a random element of M(d, F) has an eigenvalue in F with
multiplicity 1 is at least 2/7. Therefore the probability that Step (1) is performed n
times is less than cn for some constant 0 < c < 1 independent of d, |F | and |K|. We
remark that the constants involved in our analysis can be reduced by choosing our
random matrix a to be cyclic. For a discussion and analysis of the Meataxe and
cyclic matrices, see [12, 13].

If we progress to Step (2), we expect that F [G] ∼= M(d, F). If so, then the module
vF [G] is isomorphic to the natural module F d and this will be confirmed in Step (4).
If it is not so, then F [G] ∼= M(d, L) where L > F , and this will be detected as some
conjugated generating matrix will not lie in GL(d, F). Thus the algorithm returns the
correct information, and the probability that Step (1) fails to find a suitable matrix a
can be made arbitrarily small.

Consider now the complexity of the algorithm. Assume that we can find a random
a ∈ F [G] of sufficient randomness in O(d3) field operations, and that Step (1) is
executed a constant number of times. Computing ca(t) takes O(d3) operations in
K, see [15] or [13] for a sharper bound. Finding the linear factors of ca(t) takes
O(d log2 d log log d log(dq)) operations in F [16, Corollary 14.16], since the polynomial

5

has its coefficients in F . Step (3) of the algorithm is essentially the “Spin” process as
employed by the Meataxe [7]: it differs from the standard in that the unechelonised
images are maintained. Both Step (2) and Step (3) take O(d3) field operations, see [7]
and [13, p. 295]. The conjugation in Step (4) costs O(|X|d3), and checking whether or
not the conjugated generators lie in GL(d, F) has the same cost. This completes the
proof of Theorem 2.1.

4 Modulo scalars: G′ acts absolutely irreducibly

We now consider the task of writing G over F modulo scalars in K, when G′ acts
absolutely irreducibly. In particular, we prove Theorem 2.2 by presenting the relevant
algorithm, in essence an application of the algorithm of Section 3 to G′.

The algorithm is based on the following lemma.

Lemma 4.1 If G can be written over F modulo scalars in K, then G′ can be written
over F , and the F -space spanned by such a basis for G′ is unique up to multiplication
by a scalar in K×.

Proof: The first observation follows since multiplying each of g, h ∈ G by a fixed
scalar does not change the value of [g, h]. The uniqueness follows by applying Schur’s
Lemma to V as an absolutely irreducible KG′-module. 2

We now apply the algorithm of Section 3 where G′ replaces G in Steps (1) and (3).
If a basis B is found for G′, Step (4) decides whether or not the given generating set
for G is written over F modulo scalars in K when referred to this basis.

Deciding whether or not G′ acts absolutely irreducibly on V can be determined in
O(d3) field operations: the MeatAxe and the associated absolute irreducibility test
have this complexity when the group in question (here G′) acts irreducibly [7].

Seress [14, Chapter 2] presents a black-box Monte-Carlo algorithm to construct
G′ in time O(d3). Leedham-Green & O’Brien [11] present an algorithm to construct
random elements of a normal subgroup described by a normal generating set in O(d3)
field operations. Hence we can obtain random elements of G′ in O(d3) field operations.

Hence the complexity of this algorithm is that stated in Theorem 2.1.

5 Modulo scalars: determine scalars

We turn now to the general question: determine constructively whether or not G is
conjugate to a subgroup of GL(d, F).K×.

If G acts absolutely irreducibly on the given KG-module V but G′ does not, we are
still able to reduce to the situation of Theorem 2.1.

In summary, for each g in a suitable subset of G, we try to find scalars kg in K× with
the property that if each g is multiplied by kg the resulting subset generates a group

6

that can be written over F . Clearly the map g 7→ kg will then define a homomorphism
of G/G′ into K×/F×.

Our algorithm is based on the following well-known facts.

Theorem 5.1 Let G ≤ GL(d,K) act irreducibly and let F < K. The following con-
ditions are equivalent:

1. G can be written over F .

2. The characteristic polynomial of every element of F [G] has all its coefficients in
F .

3. The characteristic polynomial of every element of G has all its coefficients in F .

4. The trace of every element of F [G] lies in F .

5. The trace of every element of G lies in F .

Proof: Obviously (1) implies (2) implies (3) implies (5), and (4) and (5) are clearly
equivalent. That (5) implies (1) follows from [9, Theorem 1.17]. 2

We now consider how one determines what possible scalars can be used to multiply
g ∈ G when writing G over F modulo scalars in K.

If g ∈ G′, then g can be multiplied only by scalars in F×; and if G is perfect modulo
scalars this observation effectively resolves the problem.

If this is not the case, we consider elements g ∈ G intrinsically, without regard to
their relation to other elements of the group. Let f(t) be the characteristic polynomial
of g. A necessary condition for kg to be a suitable scalar with which to multiply g is
that the characteristic polynomial kd

gf(tk−1
g) of kgg should have its coefficients in F .

Does this condition determine kg uniquely modulo F×? No, since the characteristic
polynomial f(t) of g may have zero coefficients.

If f(t) is a polynomial in ts for some s > 1 then one obtains a number of ex-
pressions for ks

g modulo F× (assuming that s has been chosen to be maximal): one
expression for each non-zero non-leading coefficient of f(t). For an affirmative answer
these expressions must agree; one may then obtain up to s distinct possibilities for
kg mod F×.

More precisely, let f(t) = td + a1t
d−1 + · · · + ad and s := gcd{i : ai 6= 0}. The

condition that kd
gf(tk−1

g) should have all its coefficients in F reduces to a set of expres-
sions for ku

g mod F×, where u = gcd(s, |K| − 1). To solve ku
g = θ mod F×, we simply

find one solution, say λ; the general solution is now kg = λx where x runs through the
gcd(u, |K×/F×|) coset representatives of the u-th roots of 1 in K×/F×.

If we consider imprimitive groups, such as GL(d, q) o C2 for some odd q written
naturally as a subgroup of GL(2d, q2), these demonstrate that it is not generally true
that u = 1 for most choices for g, which would of course lead to an immediate solution
to the problem.

The resulting algorithm is the following.

7

1. Find a random sequence S = (g0, g1, . . . , gt−1) of elements of G that together
with G′ acts absolutely irreducibly.

Clearly the given generators can be arranged in such a sequence, but there are
advantages in having a random sequence, especially if this has fewer elements
than the given generating set. We terminate the sequence as soon as we have an
absolutely irreducible generating set.

2. For each j ∈ [0, . . . , t− 1] find the set Cj of cosets F×k for k ∈ K× for which kgj

has its characteristic polynomial over F . If Cj = ∅ for any j then return false.
Reorder S in order of increasing size of Cj.

3. Now set up a backtrack search. This will take place in a rooted tree of depth t.
Every vertex of depth j is joined to |Cj| vertices of depth j+1, the corresponding
edges being labelled by the elements of Cj. Thus when the backtrack reaches a
vertex of depth j, elements ki have been selected for all i ∈ {0, . . . , j−1}. At this
point the algorithm proposes to multiply gi by ki for all i < j, and is looking for
a suitable kj by which it can multiply gj. The choice of kj should be compatible
with the previous choices. We explain below how this is tested. Each element
of Cj is tried in turn, until either a satisfactory element of Cj is found, and the
backtrack advances along the corresponding edge, or it is found that no edge
is satisfactory, and the algorithm backtracks. If the algorithm gets to depth
t, it has found an element of Cj for all j. In this case we decide whether or
not 〈G′, g0k0, . . . , gt−1kt−1〉 can be written over F , and if so whether the original
generators of G, when written with respect to the corresponding basis, are now
written over F modulo scalars in K. If so, the problem is solved; if not, we
backtrack. Thus the algorithm either produces a positive solution, or returns
false when all |C1| · · · |Cj| paths have been considered.

How do we test whether or not a given element kj of Cj is suitable? A number
of random elements of F [〈G′, g0k0, . . . , gjkj〉] are constructed, where the ki for i < j
are read off from the labels as described above. If the characteristic polynomial of any
of these random elements has coefficients which are not in F , then this value of kj is
rejected; otherwise it is accepted.

Observe that this is a powerful theoretical test to determine whether or not a
given choice of kj is suitable. Critical to its strength is that we compute character-
istic polynomials of random elements of F [〈G′, g0k0, . . . , gjkj〉] rather than of H =
〈G′, g0k0, . . . , gjkj〉. Theorems 3.1 and 5.1 imply that if H cannot be written over F
then F [H] is isomorphic to M(d, L) for some field L, where F < L ≤ K. The pro-
portion of elements of M(d, L) with trace in F is exactly |F/L|, and so we can deduce
with high probability when H cannot be written over F .

Thus we expect only to backtrack if the rejected choice of (k0, . . . , kj−1) does give
rise to a subgroup of G that can be written over F but this cannot be extended.
This can arise even when a positive outcome is eventually reached: passing from one
suitable set of scalars to another changes the scalars in a way that is defined by a

8

homomorphism from G/G′ to K×/F×, and in some cases not every homomorphism of
a subgroup of G/G′ to K×/F× will lift to a homomorphism defined on the whole of
G/G′.

6 Modulo scalars: a Clifford based approach

If G′ does not act absolutely irreducibly over V , we can adopt a more conclusive
approach suggested by Clifford’s theorem and its algorithmic realisation in [8].

Suppose that G′ acts reducibly on V , and absolutely irreducibly on the homoge-
neous components of V as G′-module. In this case Clifford’s theorem states that these
components form the blocks in a system of imprimitivity for G. There is no guaran-
tee that the restriction of G′ to any one of these blocks can be written over F modulo
scalars in K, even if the action of G on V can be so written. We consider two situations.
The first of these is considered in detail in [4].

In each case the input group G acts absolutely irreducibly on V .

1. Let N ≥ G′ be the subgroup of G that centralises the set of blocks. The number
of blocks is t where t|e. Let φ be the Frobenius automorphism of K over GF(qe/t).
Suppose that the set of blocks can be arranged in order as V1, V2, . . . , Vt where

Vi ' V φi−1

1 .

Take a K-basis B1 for V1, and let Bi be the image of B1 under an isomorphism

from V φi−1

1 to Vi. Let g be any element of G that permutes the blocks Vi cyclically.
Then gt normalises each block, and (for an affirmative answer) a scalar k ∈ K×

can be found such that the matrix of (kg)t, with respect to the ordered basis B
obtained from concatenating the bases Bi, is a block diagonal matrix with blocks
of the form (A, Aφ, . . . , Aφt−1

). Then the bases B2, B3, . . . , Bt can be multiplied
by unique scalars (one for each block) so that, with respect to the concatenation
of these bases, the matrix of g is a block permutation matrix permuting the
Vi cyclically, and where the non-zero blocks in successive rows are of the form
A, Aφ, . . . , Aφt−1

. These bases specify compatible FG-isomorphisms between the
Vi. Now let C be a basis for K over F , and let Ci be the F -basis BiC

φi
of Vi.

Then, with respect to the concatenation of the bases Ci, the elements of G appear
as block permutation matrices, where every non-zero block is identical. Thus the
set of vectors {b1c+ b2c

φ + · · ·+ btc
φt−1}, where b1 ∈ B1, and c ∈ C, and bi ∈ Bi is

the image of b1 under the above isomorphism, is an F -basis for an FG-module,
as required.

2. For some subgroup N of G, where G > N ≥ G′, the given module V is the direct
sum U1 ⊕ · · · ⊕Us of absolutely irreducible KN -modules that are permuted as a
system of imprimitivity by G/N acting regularly, and the restriction of N to U1

(and hence to any Ui) can be written over F modulo scalars in K.

Suppose that the restriction of N to U1 has been written over F modulo scalars
in K by finding a suitable basis B1 for U1. As N acts absolutely irreducibly, the

9

F -space generated by B1 is uniquely determined by U1 up to a scalar multiple
in K×. Now G/N is an abelian group that acts regularly on the set of blocks.
Thus we can obtain the structure of G/N as a direct product of cyclic groups.
Each of these cyclic groups is generated by the image of some element of G. Let
g be such an element, and let the corresponding cyclic group be of order n. Then
gn ∈ N , and so, for an affirmative answer, g can be multiplied by a scalar so
that gn, restricted to U1, when referred to B1, has its coefficients in F . When
the generator of each cyclic subgroup in the direct decomposition of G/N is the
image of an element of G that has been adjusted in this way, the basis B1 can
be spun to a basis for V under the action of these elements. If G can be written
over F modulo scalars in K, this basis will exhibit the fact.

Clearly every case in which G′ acts absolutely irreducibly on the homogeneous
components of the action of G′ on V is covered by first applying Case 1 to a suitable
set of blocks, and then applying Case 2.

7 Implementation and performance

We use the product replacement algorithm [3] to construct random elements of G.
Once an initialisation phase is complete, we can generate random elements of G with
two multiplications. We use a simple generalisation to construct elements of F [G].

An implementation of the complete algorithm is publicly available in Magma. The
computations reported in Table 1 were carried out using Magma V2.11-8 on a Pentium
IV 1.1 GHz processor. In all cases, we report times averaged over three independent
runs.

The input for the first six examples reported in Table 1 are absolutely irreducible
subgroups of GL(d,K) which can be written over F modulo scalars in K. In the column
entitled “Time”, we list the CPU time in seconds needed to construct the conjugation
matrix using the algorithm of Section 4.

The remaining examples are absolutely irreducible subgroups of GL(d,K) which can
be written over F . These are used to contrast the performance of our new algorithm
for this task with that of Glasby & Howlett [6]. In the column entitled “Time”, we
list the CPU time in seconds needed to construct the conjugation matrix using the
algorithm of Section 3; in the column labelled “G & H” we record the CPU time taken
by our implementation of the Glasby & Howlett algorithm to construct this matrix.
We have also compared the performance of both algorithms for degrees in the hundreds
and small fields. In summary, the new algorithm is faster when the discrete logarithm
calculations in the smaller field are expensive; for larger dimensions and small fields,
the original remains very competitive.

10

Table 1: Performance of algorithms for a sample of groups

d q e Time G & H

4 54 5 0.01 –

12 55 4 0.12 –

20 24 10 0.46 –

20 54 10 2.22 –

30 118 5 6.18 –

50 118 5 34.93 –

4 54 5 0.01 0.03

12 510 5 1.67 1.73

20 220 4 1.23 1.85

20 1120 2 1.75 7.48

30 1110 4 6.15 14.14

30 1910 3 22.41 185.67

References

[1] M. Aschbacher, “On the maximal subgroups of the finite classical groups”,
Invent. Math. 76 (1984), 469–514.

[2] Wieb Bosma, John Cannon, and Catherine Playoust, “The Magma algebra
system I: The user language”, J. Symbolic Comput., 24, 1997, 235–265.

[3] Frank Celler, C.R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and
E.A. O’Brien, “Generating random elements of a finite group”, Comm. Algebra
23, 1995, 4931–4948.

[4] S.P. Glasby, “Modules induced from a normal subgroup of prime index”, in
Rings, modules, algebras, and abelian groups, Eds. A. Facchini, E. Houston
and L. Salce, Lecture Notes in Pure and Applied Mathematics 236 (2004),
257–269.

[5] Nathan Jacobson, Basic Algebra. II, Second edition. W. H. Freeman and Co.,
New York, 1989.

[6] S.P.Glasby and R.B. Howlett, “Writing representations over minimal fields”,
Comm. Algebra 25 (1997), no. 6, 1703–1712.

[7] D.F.Holt and S.Rees, “Testing modules for irreducibility”, J. Austral. Math.
Soc. Ser. A 57 (1994), 1–16.

11

[8] Derek F. Holt, C.R. Leedham-Green, E.A. O’Brien and Sarah Rees, “Com-
puting matrix group decompositions with respect to a normal subgroup”, J.
Algebra 183, 1996, 818-838.

[9] B. Huppert and N. Blackburn, Finite Groups II, Springer, Berlin, 1982.

[10] Charles R. Leedham-Green, “The computational matrix group project”, in
Groups and Computation, III (Columbus, OH, 1999), 229–247, Ohio State
Univ. Math. Res. Inst. Publ., 8, de Gruyter, Berlin, 2001.

[11] C.R. Leedham-Green and E.A. O’Brien, “Recognising tensor products of ma-
trix groups”, Internat. J. Algebra Comput. 7 (1997), no. 5, 541–559.

[12] Peter M. Neumann and Cheryl Praeger, “Cyclic matrices over finite fields”, J.
London Math. Soc. 52 (1995), no. 2, 263–284.

[13] Peter M. Neumann and Cheryl Praeger, “Cyclic matrices and the Meataxe”,
Groups and Computation III, Ohio State Univ. Math. Res. Inst. Publ. 8 (2001),
291-299.

[14] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts
in Mathematics. Cambridge University Press, Cambridge, 2003.

[15] Igor E. Shparlinski, Finite fields: theory and computation. The meeting point
of number theory, computer science, coding theory and cryptography. Math-
ematics and its Applications, 477. Kluwer Academic Publishers, Dordrecht,
1999.

[16] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra,
Cambridge University Press, 2002.

Department of Mathematics School of Mathematical Sciences
Central Washington University Queen Mary, University of London
WA 98926-7424, USA London E1 4NS, United Kingdom
glasbys@cwu.edu C.R.Leedham-Green@qmul.ac.uk

Department of Mathematics
University of Auckland
Private Bag 92019, Auckland
New Zealand
obrien@math.auckland.ac.nz

Last revised July 2005

12

