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Abstract. Let cS(d) denote the minimal composition length of
all finite solvable groups with solvable (or derived) length d. We
prove that:

d 0 1 2 3 4 5 6 7 8
cS(d) 0 1 2 4 5 7 8 13 15

.
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1. Introduction

Let cN(d) (resp. cS(d)) denote the minimal composition length of a
finite nilpotent group (resp. solvable group) with solvable length d.
Burnside [1] knew that cN(0) = 0, cN(1) = 1, cN(2) = 3, and cN(3) = 6.
It is shown in [3] and [4] that cN(4) = 13. Exact values of cN(d) for
d > 5 are unknown. P. Hall showed that 2d−1+d−1 6 cN(d) 6 2d−1,
see [10, 9]. For d > 4, Evans-Riley et al. [4] improved the upper
bound to 2d − 2, and the author (unpublished notes, 1993) improved
the lower bound to 2d−1 + d+ 1. Mann [12] and Schneider [15] further
improved the lower bound to 2d−1+2d−4 and 2d−1+3d−10 respectively.
Upper bounds are proved by producing specific examples. Constructing
groups of order pn and solvable length ⌊log2 n⌋ + 1 appears difficult,
and doing so for minimal n requires prescience. Such constructions
commonly do not work for all primes.
Let CN(d) (resp. CS(d)) denote the set of all isomorphism classes of

finite nilpotent groups (resp. solvable groups) having solvable length d,
and minimal composition length. We shall blur the distinction between
a group G, and the isomorphism class [G] that it represents. Accord-
ingly, we write G ∈ CN(d) (resp. G ∈ CS(d)) as an abbreviation for
the phrase “G is a nilpotent group (resp. solvable group) with solvable
length d, and minimal composition length.” For G ∈ CN(d) or CS(d),
G(d−1) is the unique minimal normal subgroup of G (Lemma 1(a)).
[Recall that the derived series for G is defined recursively by G(0) = G
and G(i+1) = [G(i), G(i)] for i > 0, and the solvable or derived length of
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a solvable group G is the minimal value of d such that G(d) = 1.] A
major difficulty in studying groups G ∈ CN(d) is that if d > 1, then
G/G(d−1) never lies in G ∈ CN(d− 1). The reason that we have made
so much progress in the solvable case is that if G ∈ CS(d), then G/G(k)

is commonly an element of CS(k) for large k less than d.
There is an analogy between “minimal composition length” groups

and p-groups of maximal class. The latter may be viewed as having a
given nilpotency class c, and minimal composition length. This class
of groups is amenable to inductive study as if G has maximal class c,
then G/γc(G) has maximal class c−1. Maximal class groups have been
well studied, see for example [10], III §14, and [18].
We abbreviate the composition length of a solvable group G by c(G),

and its solvable (or derived) length by d(G). If |G| = pk11 · · · pkss , where
the pi are distinct primes, then c(G) = k1 + · · ·+ ks. It is clear that

cS(d) + 1 6 cS(d+ 1) 6 2cS(d) + 1 (d > 0),

where the upper bound is obtained by considering the wreath prod-
uct GwrC2 where G ∈ CS(d). The above inequalities imply that
d 6 cS(d) 6 2d − 1. We show in the next paragraph that cS(d) grows
exponentially, and is considerably less than cN(d) for large d. For
example, 17 6 cS(10) 6 24 and 532 6 cN(10) 6 1022. [M.F. Newman
(pers. comm.) can show that cN(10) 6 832, and the author can show
20 6 cS(10).]
If G is the r-fold permutational wreath product H wr · · · wrH where

H = S4, then |G| = |H|1+4+···+4r−1

. Therefore

c(G) = c(H)(4r − 1)/3 < (4/3) · 4r, and d(G) = 3r.

This proves that cS(d) < (4/3) · 4d/3 when d is a multiple of 3. Since
91/5 < 41/3, a sharper bound is obtained by takingH to be the primitive
subgroup GL2(3) ⋉ C2

3 of S9. Then d(H) = 5 and c(H) = 7, so
c(G) = 7(9r − 1)/8 < (7/8) · 9r. Thus cS(d) < (7/8) · 9d/5 when d
is a multiple of 5. Lower bounds for cS(d) require more work. It is
shown in Theorem 8 of [5] that a solvable group G with d(G) = d and
c(G) = n satisfies

d 6 α log2 n+ 9 where α = 5 log9 2 + 1.

The smallest value of n satisfying the above inequality is cS(d), and so
2(d−9)/α 6 cS(d). Since 0.088 < 2−9/α, 1.3 < 21/α and 91/5 < 1.56, we
see that

(0.088)(1.3)d < cS(d) < (7/8)(1.56)d (d > 0)

where the upper bound holds when d is a multiple of 5.
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In our proof that cS(8) > 15, for example, we learn enough about
the structure of putative groups with d(G) = 8 and c(G) = 15 in order
to construct them. Indeed, with more attention to detail we could
determine a complete and irredundant list of isomorphism classes in
CS(d) for d 6 8. This requires great care as it is all to easy to omit
an isomorphism class, or to list the same class twice. In this paper we
fall short of this aim, however, the isomorphism problem is solved for
d 6 6 in the preprint [6].
The groups we list in CS(d), d 6 8, have the property that their

lattice of normal subgroups is a chain. The class of such groups, which
we call normally uniserial, is closed under quotients and hence suited
to inductive study. Moreover, if M > N are normal subgroups of a nor-
mally uniserial group, then M/N is a characteristically uniserial group,
i.e. its lattice of characteristic subgroups is a chain. Clearly, simple
groups are normally (and hence characteristically) uniserial. In [5] the
author constructs a remarkable group G = GL2(3)⋉32+1

⋉26+1
⋉38+1 of

order 211313 with solvable length 10. (A more systematic construction
of G is given in [7] where it is shown to be the derived 10 quotient of
an infinite pro-{2, 3} group.) G is normally uniserial. I was surprised
to learn that G is a maximal subgroup of the sporadic simple group
Fi23 of order 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23, see [2], p. 177. Indeed,
G has the property that G/G(d) ∈ CS(d) for d = 0, 1, 2, 3, 4, 5, 6, 8, and
very likely also for d = 10. For the purposes of this paper it is useful to
understand the group G/G(8) = GL2(3)⋉32+1

⋉26+1 which is described
in [13, 7]. Certain groups in CS(d), d 6 6, have finite presentations
with deficiency zero, see [8] for details.

2. The case d 6 6

In this section we determine the solvable groups in G ∈ CS(d) for d 6 6.
That is, we determine solvable groups with a given solvable length
d 6 6, and minimal composition length subject to this constraint. We
shall determine sufficient structure of these groups in order to compute
additional values of cS(d). We stop short of classifying the groups up to
isomorphism. The determination of G ∈ CS(d) for d 6 6 is influenced
by the elementary fact that a metacyclic group is never the derived
subgroup of a group. This fact dates back to [20], Satz 9, p. 138.

Lemma 1. (a) If G ∈ CS(d), then G(d−1) is the unique minimal
normal subgroup of G.

(b) Let G be a solvable group with a unique minimal normal sub-
group. Let P = Op(G) be nontrivial, and suppose that |P/Φ(P )|
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equals pr. Then Op′(G) = 1, and G/P is isomorphic to a
completely reducible subgroup of GLr(p) ∼= Aut(P/Φ(P )).

(c) If 2 6 i < d(G), then G(i−1)/G(i) and G(i)/G(i+1) are not both
cyclic. In particular, c(G(i)/G(i+2)) > 3 for 1 6 i < d(G)− 1.

(d) Let 1 6 i < d(G) and let G(i−1)/G(i) be cyclic, and the unique
minimal normal subgroup of G/G(i). Then G/G(i) acts faithfully
as a group of automorphisms of G(i)/G(i+1), and G/G(i+1) is a
split extension of G(i)/G(i+1) by G/G(i). Moreover, G(i−1)/G(i)

has order coprime to |G(i)/G(i+1)| and acts fixed-point-freely.
(e) Suppose that i > 2, c(G(i−1)/G(i)) = 2 and c(G(i)/G(i+1)) = 1.

Then G(i−1)/G(i+1) is an extraspecial group of order p3.

Proof. (a) Let N be a nontrivial normal subgroup of G. If G(d−1) 66 N ,
then G/N has solvable length d, and smaller composition length. Since
G ∈ CS(d), this is impossible. Thus G(d−1) 6 N , as desired.

(b) The order of the unique minimal normal subgroup is a power of
some prime, say p, and Op′(G) = 1. By a result of Hall and Higman
[10], VI§6.5, CG/Φ(P )(P/Φ(P )) = P/Φ(P ), and hence

G/P 6 Aut(P/Φ(P )) ∼= GLr(p).

A standard argument shows that G/P acts completely reducibly, oth-
erwise Op(G) > P . [Recall that a module is called completely reducible
if each submodule has a complementary submodule.]

(c) Suppose to the contrary that G(i−1)/G(i) and G(i)/G(i+1) are both
(nontrivial) cyclic groups. Then Aut(G(i)/G(i+1)) is abelian and so
CG(G

(i)/G(i+1)) 6 G′. This implies that G(i−1)/G(i+1) is abelian (being
a cyclic extension of a central subgroup). This is a contradiction.

(d) To simplify notation assume that G(i+1) = 1, and set M = G(i−1)

and N = G(i). Since M/N is a minimal normal subgroup of G/N , it
is elementary abelian. Since it is also cyclic, it has prime order, say p.
If p divides |N |, then M ′ = [M,N ] < N , a contradiction. Thus N has
order coprime to p. Now M 6 CG(M) < N because M is abelian and
the chief factor N/M does not centralize M . Therefore, CG(M) = M
and G/M is a subgroup of Aut(M). Since N = [M,N ] × CN(M), it
follows that CN(M) = 1, or that M/N acts fixed-point-freely on N .
By the Frattini argument, G is a split extension of M by NG(K) where
K is Sylow-p subgroup of M .

(e) Since G(i−1)/G(i) centralizes G(i)/G(i+1), it follows that G(i−1)/G(i)

is not cyclic. Thus there exist primes q and p such thatG(i)/G(i+1) ∼= Cq
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and G(i−1)/G(i) ∼= Cp × Cp . If p 6= q, then G(i−1)/G(i+1) is abelian, a
contradiction. Therefore G(i−1)/G(i+1) is extraspecial of order p3. �

Notation. Let G have solvable length d. Write n(G) = (n1, n2, . . . , nd)
where ni is the composition length of the abelian group G(i−1)/G(i).
Note that c(G) = n1+n2+ · · ·+nd. The invariant n(G) will provide a
useful tool for classifying elements of CS(d). LetK⋉N andK·N denote
a split extension, and a not necessarily split extension, of N by K
respectively. Let p, q, r, s denote primes. Let Cp and Ep denote cyclic
groups, and extraspecial groups of order p and p3 respectively. Denote
the metacyclic group 〈a, b | ap = bq = 1, ba = bk〉 of order pq by Mp,q,
where the order of k modulo q is p. Note that q ≡ 1 mod p and the
isomorphism type of Mp,q is independent of k. Let H denote an exten-
sion of the quaternion group Q8 of order 8 by the symmetric group S3,
that has solvable length 4. There are two such groups, namely GL2(3)
and the binary octahedral group BO = 〈a, b, c | a2 = b3 = c4 = abc〉.
Furthermore, GL2(3) = S3 ⋉ Q8 is a split extension, and BO is a
nonsplit extension.

Theorem 2. Let cS(d) denote minimal composition length of a finite
solvable group with solvable length d. The values of cS(d), and the
structure of G ∈ CS(d) for d 6 6, are given below.

d 0 1 2 3 4 5 6
cS(d) 0 1 2 4 5 7 8
G 1 Cp Mp,q Mp,q ⋉ C2

r Mp,q ⋉ Er H ⋉ C2
s H · Es

Cp ⋉ Er BO Sp2(3) · Es

.

Proof. Let G ∈ CS(d). If d 6 2, then the structure of G is clear, and
hence so too are the values of cS(d). Suppose now that d > 3. It
follows from Lemma 1(c) that ni + ni+1 > 3 for i > 2. Hence the
possible values of n(G) are as follows:

d 3 4 5 6
n(G) (1, 1, 2) (1, 1, 2, 1) (1, 1, 2, 1, 2) (1, 1, 2, 1, 2, 1)

(1, 2, 1) (1, 2, 1, 2, 1)
.

The question arises as to whether each of the 6 above values of n(G)
arise for particular groups G. The answer is affirmative. There is a sub-
group of the automorphism group of an exponent-p extraspecial group
of order p2k+1 isomorphic to the general symplectic group GSp2k(p), see
[19, 7]. Thus we may form the split extension GSp2k(p)⋉ p2k+1. When
k = 1 and p = 3 this group is G = GL2(3)⋉ E3 as GSp2(3)

∼= GL2(3).
Now G has solvable length 6, and the quotients G(i−1)/G(i) are C2, C3,
C2 ×C2, C2, C3 ×C3, C3. Thus n(G) equals (1, 1, 2, 1, 2, 1). By taking
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quotients of G or G′ we see that each of the 6 above values of n(G)
arise.
We shall now be more specific about the structure of an arbitrary

group G such that n(G) is one of the 6 above values. It is clear that
G ∈ CS(d). If n(G) = (1, 1, 2), then G(2) is not cyclic by Lemma 1(c),
so G(2) ∼= C2

r for some prime r. By Lemma 1(d), G is a split extension
Mp,q ⋉ C2

r . Indeed, Mp,q 6 GL2(r) acts irreducibly. If n(G) = (1, 2, 1),
thenG′ = Er is extraspecial of order r

3 by Lemma 1(e), andG = Cp⋉Er

where Cp acts fixed-point-freely on Er/Φ(Er). When n(G) = (1, 1, 2, 1),
then G = Mp,q · Er. Since p | (q − 1), q 6= r and pq | (r2 − 1)(r2 − r),
it follows that G = Mp,q ⋉ Er is split, unless p = q − 1 = r and
G = BO. Suppose that n(G) = (1, 1, 2, 1, 2). Then G(4) is noncyclic,
say C2

s where s is prime. Now G(2)/G(4) is an extraspecial group by
Lemma 1(e), and it acts irreducibly on G(4). This forces G(2)/G(4) to
be isomorphic to the quaternion group Q8, or the dihedral group D8,
of order 8. As Out(D8) ∼= C2, and Out(Q8) ∼= S3, it follows that
H = G/G(4) is an extension of Q8 by S3. Therefore, H ∼= GL2(3)
or BO. By Lemma 1(d), G is a split extension H ⋉ C2

s . The action
of H on C2

s is irreducible, and exists only for certain odd primes s.
Arguing as above, the structure of G satisfying n(G) = (1, 2, 1, 2, 1) is
Sp2(3)·Es, where Sp2(3) denotes the symplectic group and Sp2(3)

∼= H ′.
If s 6= 3, then G = Sp2(3) ⋉ Es is split, and if s = 3 then there exist
nonisomorphic nonsplit extensions of Es by Sp2(3), see [6]. Finally
when n(G) = (1, 1, 2, 1, 2, 1), H = G/G(4) ∼= GL2(3) or BO and
G(4) ∼= Es is extraspecial of order s3. If s = 3, then H ∼= GL2(3),
and if s 6= 3, then H · Es is a split extension. �

3. The case d = 7

Before proving that cS(7) = 13 in Theorem 7, we need four preliminary
lemmas.

Lemma 3. Let cr(n) denote the maximal solvable length of a completely
reducible solvable subgroup of GLn(F), where F is any field. Then

n 1 2 3 4 5 6 7 8
cr(n) 1 4 5 5 5 6 6 8

.

Proof. See [13] for an explicit formula for the function cr(n). �

Lemma 4. Let P be a finite abelian group, and let Q be a solvable
subgroup of Aut(P ) with solvable length d.

(a) Then
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|P | p p2 p3 p4

d 6 1 6 4 6 5 6 6
.

(b) A subgroup chain P = P0 > P1 > · · · > Pn = 1 is called maxi-
mal if |P | = pn, or equivalently |Pi−1 : Pi| = p for i = 1, . . . , n.
If P is an abelian group of order dividing p4, and Q stabilizes a
maximal subgroup chain, then d 6 3.

Proof. (a) If P is elementary abelian of order pn, then the maximum
value of d is given in [13], Theorem A. In particular, d = 1, 4, 5, 6 when
n = 1, 2, 3, 4. If P is not elementary abelian, then P p = {gp | g ∈ P}
is a proper nontrivial characteristic subgroup. Furthermore, the auto-
morphisms of P centralizing both P/P p and P p, form an abelian group.
The above table follows from these two facts.

(b) This is true when P is elementary abelian, as then Q is a subgroup
of the upper triangular matrices. If P is not elementary abelian, then
consider the groups P/P p and P p as above. �

Much more is known about primitive maximal solvable linear groups
than is given in the following lemma, however, this simplified form is
all that we require.

Lemma 5. Let M be an absolutely irreducible primitive maximal solv-
able subgroup of GLr(F) where F is a finite field. Then Z := Z(M) is
cyclic of order |F| − 1. If F is the Fitting radical of M (the maximal
nilpotent normal subgroup of M), then F/Z is elementary abelian of
order r2. If r = pk11 · · · pkss where the pi are distinct primes, then there
exist extraspecial subgroups Ei of F of order p2ki+1

i such that F is a
central product (E1 × · · · × Es)YZ, and F is conjugate in GLr(F) to
(E1 ⊗ · · · ⊗ Es)Z.

Proof. The first two sentences follow from [17], Lemma 19.1 and The-
orem 20.9, and the last sentence can be deduced from results on pages
141–146. A more convenient reference is [16], Theorems 2.5.13 and
2.5.19. �

The following result is proved in [4, 14].

Lemma 6. Let p > 3 be a prime, and let P be a p-group satisfying
|P ′/P ′′| = p3 and P ′′ 6= 1. Then

P ′ = γ2(P ) > γ3(P ) > γ4(P ) > γ5(P ) = P ′′.

Theorem 7. A finite solvable group with solvable length 7 has composi-
tion length at least 13, and this bound is best possible. More succinctly,
cS(7) = 13.
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Proof. As usual, our proof has two parts: (1) show that if d(G) = 7,
then c(G) > 13, and (2) exhibit a group G with d(G) = 7 and
c(G) = 13. The second part is deferred to Proposition 8 below.
Suppose that d(G) = 7. By the proof of Lemma 1(a), we may

reduce to the case that G has a unique minimal normal subgroup.
By Lemma 1(b), there is a (unique) prime p such that P := Op(G) is
nontrivial, and Q := G/P is a completely reducible subgroup of GLr(p)
where |P/Φ(P )| = pr. If d(P ) > 4, then c(P ) > 13 by [4, 3], and hence
c(G) > 14. If d(P ) = 1, then d(Q) > 6 and c(Q) > cS(6) = 8 by
Theorem 2. However, r > 6 by Lemma 3, and so

c(G) = c(Q) + c(P ) > 8 + 6 = 14.

The two remaining cases when d(P ) = 2 or 3 require more detailed
analyses.

Case (a) d(P ) = 2. Now d(Q) > 5, so c(Q) > cS(5) = 7 by
Theorem 2. If c(P ) > 6, then c(G) = c(Q) + c(P ) > 7 + 6 = 13.
Thus it suffices to consider the cases when c(P ) < 6. Let |P | = pr+s

where |Φ(P )| = ps. Then r > 3 by Lemma 3 and there are three cases
when c(P ) < 6, namely

(r, s) = (3, 1), (3, 2) and (4, 1).

We show that the first possibility never arises, and if the second or
third arise, then c(G) > 13.

Subcase (r, s) = (3, 1). In this case Φ(P ) = P ′ has order p. If
Z(P ) = P ′, then P is an extraspecial group with even composition
length, a contradiction. Hence Φ(P ) < Z(P ) < P and since Q acts
completely reducibly, Q 6 GL1(p) × GL2(p) by Lemma 1(b). Thus
d(Q) 6 4 by Lemma 3. This is a contradiction as d(Q) > 5. Hence
this case never arises.

Subcase (r, s) = (3, 2). Arguing as in the previous case, we see that
Q 6 GL3(p) is an irreducible subgroup. If Q does not act absolutely
irreducibly, then Q 6 GL1(p

3), and d(Q) 6 1, a contradiction. If
Q 6 GL3(p) is an imprimitive subgroup, then Q 6 GL1(p) wrS3 and
d(Q) 6 3, a contradiction. In summary, Q 6 GL3(p) acts absolutely
irreducibly and primitively. Thus Q is a subgroup of an absolutely
irreducible primitive maximal solvable subgroup M of GL3(p). By
Lemma 5 there are characteristic subgroups Z 6 F 6 M such that
F/Z is elementary abelian of order 32, M/F 6 Sp2(3), and F ′ has
order 3. Since c(Q) > 7 and c(P ) = 5, we must eliminate the case when
c(G) = 12. In this case, c(Q) = 7, M/F ∼= Sp2(3), and F contains an
extraspecial subgroup of order 33 and exponent 3, and M = QZ. Since



SOLVABLE GROUPS WITH MINIMAL COMPOSITION LENGTH 9

Z(Q) 6 Z(M), and M acts absolutely irreducibly, there is an element
z ∈ Z(Q) of order 3 which induces the scalar transformation ω1 on
P/Φ(P ) where ω is primitive cube root of 1 modulo p. We view z as
an element of G(4) of order 3.
We show that Φ(P ) 6 Z(P ). If Φ(P ) 66 Z(P ), then

Φ(P ) < Z(P )Φ(P ) < P.

This contradicts the fact that Q acts irreducibly on P/Φ(P ). In sum-
mary, we know that Φ(P ) 6 Z(P ), and gzΦ(P ) = gωΦ(P ) for all g ∈ P .
Therefore,

[g1, g2]
z = [gω1 , g

ω
2 ] = [g1, g2]

ω2

(g2, g2 ∈ P ).

This proves that z acts nontrivially on P ′, and hence Aut(P ′) contains
a subgroup with solvable length at least 5, contrary to Lemma 4(a).
Thus we have proved c(G) > 13 in this case.

Subcase (r, s) = (4, 1). Then Φ(P ) = P ′ has order p, so P ′ 6 Z(P ).
Since d(P ) > 1, it follows that p2 6 |P : Z(P )| 6 p4. If |P : Z(P )| = p2,
then it follows from Lemma 1(b) that Q 6 GL2(p) × GL2(p), and
hence d(Q) 6 4 by Lemma 3. This is a contradiction as d(Q) > 5. If
|P : Z(P )| = p3, then similar reasoning shows Q 6 GL3(p) × GL1(p).
Arguing as in the previous subcase, Q acts absolutely irreducibly and
primitively on P/Z(P ). Appealing as above to Lemma 5, a nontrivial
element z ∈ Z(Q) maps generators a1, a2, a3, a4 for P to aω1 , a

ω
2 , a

ω
3 , a4

modulo Φ(P ) where ω is a primitive cube root of unity modulo p. Since
P ′ = Φ(P ) 6 Z(P ), there is a well defined action of z on P ′. Since

[ai, aj]
z = [azi , a

z
j ] = [ai, aj ]

ω or [ai, aj]
ω2

, z ∈ G(4) acts nontrivially on
P ′. Thus Aut(P ′) contains a subgroup with solvable length at least 5,
contrary to Lemma 4. Thus c(G) > 13 in this case also.

Case (b) d(P ) = 3. Since P ′′ 6= 1, |P ′/P ′′| > p3 by Hilfsatz 7.10 of
[10]. If p = 2, then GL2(2) and GL3(2) are too small to accommodate
a solvable subgroup Q with d(Q) > 4 and c(Q) > cS(4) = 5. Hence if
p = 2, then r > 4 and

c(P ) > c(P/Φ(P )) + c(P ′/P ′′) + c(P ′′) > 4 + 3 + 1 = 8.

Therefore c(G) = c(Q) + c(P ) > 5 + 8 = 13 as desired. Assume now
that p > 3 and |P ′/P ′′| = p3. By Lemma 6,

P ′ = γ2(P ) > γ3(P ) > γ4(P ) > γ5(P ) = P ′′.

Now P/P ′ acts nontrivially on P ′/P ′′. Since G(3) 66 P , it follows that
Aut(P ′/P ′′) contains a subgroup with solvable length at least 4. This
contradicts Lemma 4(b). Henceforth assume that |P ′/P ′′| > p4.
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In summary, c(Q) > 5 and c(P ) > 7, so c(G) > 12. Assume by
way of contradiction that c(G) = 12. Then c(Q) = 5 and c(P ) = 7.
Since d(Q) = 4, we have Q ∈ CS(4). Thus Q ∼= GL2(3) or BO by
Theorem 2. In addition, |P/P ′| = p2, |P ′/P ′′| = p4 and |P ′′| = p. Thus
γ2(P )/γ3(P ) is cyclic, and so

P ′′ = [γ2(P ), γ2(P )] = [γ2(P ), γ3(P )] 6 γ5(P ).

If P ′′ < γ5(P ), then P ′ = γ2(P ) > γ3(P ) > γ4(P ) > γ5(P ) > P ′′.
However, P/P ′ acts nontrivially on the abelian group P ′/P ′′ of or-
der p4. As Q acts irreducibly on P/P ′, it follows that G(4) = P .
Thus Aut(P ′/P ′′) contains a subgroup with solvable length at least 4,
contrary to Lemma 4(b). Hence P ′′ = γ5(P ).
If the cyclic group γ2(P )/γ3(P ) has order at least p2, then its order

is exactly p2, and we have the characteristic series

P ′ = γ2(P ) > γ2(P )pγ3(P ) > γ3(P ) > γ4(P ) > γ5(P ) = P ′′.

As above, this is impossible. Thus |γ2(P )/γ3(P )| = p, and |γ3(P )| = p4.
Now γ3(P ) is abelian as [γ3(P ), γ3(P )] 6 γ6(P ) = 1. Exactly one of
|γ3(P ) : γ4(P )| or |γ4(P ) : γ5(P )| has order p2. Suppose that γ3(P )
has a characteristic subgroup N of index p2, and K is a solvable group
of automorphisms of γ3(P ). By Lemma 4(a), K(4) centralizes both
γ3(P )/N and N . Since N is abelian, it follows that K(5) = 1. However,
P ′/γ3(P ) acts nontrivially on γ3(P ) and G(4) 66 P ′, so Aut(γ3(P ))
contains a subgroup with solvable length at least 6. This contradicts
the fact that K(5) = 1, and proves that |γ4(P ) : γ5(P )| = p2. Now
K = G/γ3(P ) satisfies d(K) = 6 and c(K) = 8. Thus K ∈ CS(6). By
Theorem 2, K ∼= H · Ep where H ∼= GL2(3) or BO.
Consider the section G(3)/γ4(P ). Since G(4) = P we have

|G(3) : P | = 2, |P : P ′| = p2 and |P ′ : γ3(P )| = |γ3(P ) : γ4(P )| = p.

Let z ∈ G(3) have order 2. It follows from the structure of G/γ3(P )
that z acts as the scalar transformation −I on P/P ′ ∼= Cp × Cp. As p
is odd, and z centralizes both P ′/γ3(P ) and γ3(P )/γ4(P ), it centralizes
the abelian group P ′/γ4(P ). Let g ∈ P and h ∈ P ′. Then

[g, h] ≡ [g, h]z ≡ [gz, hz] ≡ [g−1, h] ≡ [g, h]−1 mod γ4(P ).

As p is odd and [g, h]2 ≡ 1 mod γ4(P ), we see that [P, P ′] ⊆ γ4(P ).
This is a contradiction as γ3(P ) 6⊆ γ4(P ).
In summary, we have proved in each case that if d(G) = 7, then

c(G) > 13. �

The last case in Theorem 7 was difficult to eliminate. We can
show that γ3(P ) is either (Cp)

4 or Cp2 × (Cp)
2. In either case, there
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exist a subgroup H ⋉ Ep of Aut(γ3(P )) with solvable length 6 nor-
malizing a subgroup chain γ3(P ) = P0 > P1 > P2 > P3 = 1 with
|P0 : P1| = |P2 : P3| = p, and |P1 : P2| = p2. Our contradiction
was therefore subtle. It arose not because the action of G/γ3(P ) on
γ3(P ) was untenable, rather because there was no extension of γ3(P )
by H ⋉ Ep having solvable length 7.

Proposition 8. There exists a solvable group with solvable length 7
and composition length 13. Thus cS(7) 6 13.

Proof. Let V be an r-dimensional vector space over a field F. The
homogeneous component ΛiV of the exterior algebra ⊕r

i=0Λ
iV has

dimension
(

r
i

)

. Set P = V × Λ2V , and define a binary operation on P
via the rule

(v1, w1)(v2, w2) = (v1 + v2, w1 + w2 + v1 ∧ v2)

where v1, v2 ∈ V,w1, w2 ∈ Λ2V . Then P is a group. If char(F) 6= 2, then
the derived subgroup P ′ equals {0} ×Λ2V because v2 ∧ v1 6= −v1 ∧ v2.
The right action of GLr(F) on P defined by (v, w)g = (vg, w(g ∧ g))
gives rise to a split extension GLr(F) ⋉ P . We are interested in the
subgroup K ⋉ P of this group when r = 3, |F| = p is an odd prime
and K 6 GL3(p) is isomorphic to Sp2(3)⋉ E3. If p ≡ 1 mod 3, then
there are faithful representations Sp2(3)⋉E3 → GL3(p). [Indeed, when
p ≡ 1 mod 9, then there are faithful representations of the nonsplit
extensions Sp2(3) · E3 → GL3(p).] Let G = K ⋉ P . Then c(K) = 7
and c(P ) =

(

3
1

)

+
(

3
2

)

= 6, so c(G) = c(K) + c(P ) = 13. We show

now that d(G) = 7. An element z ∈ K(4) of order 3 induces the scalar
transformation ω1 on P/Φ(P ) ∼= V , where ω has order 3 modulo p.
If k ∈ K has matrix A relative to a basis e1, e2, e3 for V , then k ∧ k
has matrix det(A)(A−1)T relative to the basis e2 ∧ e3, e3 ∧ e1, e1 ∧ e2
for Λ2V . Therefore, z acts like ω21 on Φ(P ) = P ′. This shows that
G(5) = P , and hence that d(G) = 7. �

4. The case d = 8

Theorem 9. A finite solvable group with solvable length 8 has composi-
tion length at least 15, and this bound is best possible. More succinctly,
cS(8) = 15.

Proof. As remarked in the Introduction, the group GL2(3)⋉E3 ⋉ 26+1

of order 21134 has solvable length 8. This proves that cS(8) 6 15.
Since cS(7) = 13, we see that cS(8) = 14 or 15. We eliminate the case
cS(8) = 14.
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Let G ∈ CS(8). Suppose that P = Op(G) is nontrivial and |P/Φ(P )|
equals pr. Then Q = G/P is a completely reducible subgroup of
GLr(p). If d(P ) > 4, then c(P ) > 13 by [4, 3], and hence c(G) > 15.
If d(P ) = 1, then d(Q) > 7 and r > 8 by Lemma 3. By Theorem 7,
c(Q) > 13 so c(G) > 13 + 8 = 21. We shall now consider the two
remaining cases: d(P ) = 2 or 3.

Case d(P ) = 2. Now d(Q) > 6, so c(Q) > cS(6) = 8. By Lemma 3,
r > 6 therefore c(P ) > 7, and so c(G) > 8 + 7 = 15.

Case d(P ) = 3. Now d(Q) > 5, so c(Q) > cS(5) = 7. By Lemma 3,
r > 3. Since |P ′/P ′′| > p3, it follows that |P | > p7. Therefore
c(G) > 7 + 7 = 14. Suppose that c(G) = 14. Then c(Q) = 7, |P | = p7,
P ′ = Φ(P ), |P ′ : P ′′| = p3 and |P ′′| = p. By Lemma 3, Q 6 GL3(p)
acts irreducibly. Arguing as in Theorem 2, Q acts absolutely irreducibly
and primitively. Therefore, G(5) = P . It follows from Lemma 5 that
Q ∼= Sp2(3) ·E3 where E3 has exponent 3. Now P/P ′ acts nontrivially
on P ′/P ′′. Therefore Aut(P ′/P ′′) contains a subgroup with solvable
length at least 6. This is impossible by Lemma 4(b). Hence cS(8) = 15
as claimed. �

With more precise arguments, we can show that if d(G) = 8 and
c(G) = 15, then d(P ) = 2. By Lemma 3, G/P acts irreducibly on
P/Φ(P ), and so Φ(P ) = P ′ = Z(P ). Thus P is an extraspecial
group of order p6+1 (and exponent p, if p is odd). Since c(Q) = 8
and d(Q) = 6, Q ∼= H ·Es by Theorem 2. The representation theory of
extraspecial groups shows that s = 3, and hence Q ∼= GL2(3)⋉E3. In
addition, p ≡ −1 mod 3, and Q′ acts irreducibly but not absolutely
irreducibly on P/Φ(P ). In summary, elements of CS(8) have the form
(GL2(3)⋉ E3) · p

6+1.
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