Modules induced from a normal subgroup of prime index

S. P. GLASBY

ABSTRACT. Let G be a finite group and H a normal subgroup of prime index p. Let V be an irreducible $\mathbb{F}H$ -module and U a quotient of the induced $\mathbb{F}G$ -module $V\uparrow$. We describe the structure of U, which is semisimple when $\operatorname{char}(\mathbb{F}) \neq p$ and uniserial if $\operatorname{char}(\mathbb{F}) = p$. Furthermore, we describe the division rings arising as endomorphism algebras of the simple components of U. We use techniques from noncommutative ring theory to study $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$ and relate the right ideal structure of $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$ to the submodule structure of $V\uparrow$.

2000 Mathematics subject classification: 20C40, 16S35

1. INTRODUCTION

Throughout this paper G will denote a finite group and H will denote a normal subgroup of prime index p. Furthermore, V will denote an irreducible (right) $\mathbb{F}H$ -module, and $V \uparrow = V \otimes_{\mathbb{F}H} \mathbb{F}G$ is the associated induced $\mathbb{F}G$ -module. Let a be an element of G not in H, and let $\Delta := \operatorname{End}_{\mathbb{F}H}(V)$ and $\Gamma := \operatorname{End}_{\mathbb{F}G}(V \uparrow)$.

This paper is motivated by the following problem: "Given an irreducible $\mathbb{F}H$ -module V, where \mathbb{F} is an arbitrary field, and a quotient Uof $V\uparrow$, determine the submodule structure of U and the endomorphism algebras of the simple modules." By Schur's lemma, Δ is a division algebra over \mathbb{F} , so we shall need techniques from noncommutative ring theory.

We determine the submodule structure of U by explicitly realizing $\operatorname{End}_{\mathbb{F}G}(U)$ as a direct sum of minimal right ideals, or as a local ring. It suffices to solve our problem in the case when $U = V\uparrow$. Henceforth $U = V\uparrow$.

In the case when \mathbb{F} is algebraically closed of characteristic zero, it is well known that two cases arise. Either V is not G-stable and $V\uparrow$ is irreducible, or V is G-stable and $V\uparrow$ is a direct sum of p pairwise nonisomorphic irreducible submodules. In [GK96] the structure of $V\uparrow$ is analyzed in the case when \mathbb{F} is an arbitrary field satisfying char(\mathbb{F}) $\neq 0$. The assumption that char(\mathbb{F}) $\neq 0$ was made to ensure that Δ is a field. The main theorem of [GK96] states that the structure of $V\uparrow$ is divided into five cases when V is G-stable. In this paper, we

S. P. GLASBY

drop the hypothesis that $\operatorname{char}(\mathbb{F}) \neq 0$, and even more cases arise in the stable case (Theorems 5, 8 and 9). Fortunately, all these cases can be unified by considering the factorization of a certain binomial $t^p - \lambda$ in a twisted polynomial ring $\Delta[t; \alpha]$, which is a (left and right) principal ideal domain.

As we will focus on the case when \mathbb{F} need not be algebraically closed, a crucial role will be played by the endomorphism algebra $\Delta = \operatorname{End}_{\mathbb{F}H}(V)$. In [GK96] the submodules of $V\uparrow$ are described *up to isomorphism*. As this paper is motivated by computational applications we will strive towards a higher standard: an explicit description of the vectors in the submodule, and an explicit description of the matrices in the endomorphism algebra of the submodule. This is easily achieved in the non-stable case, which we describe for the sake of completeness.

2. The non-stable case

Let $e_0, e_1, \ldots, e_{d-1}$ be an \mathbb{F} -basis for V and let $\sigma: H \to \operatorname{GL}(V)$ be the representation afforded by the irreducible $\mathbb{F}H$ -module V relative to this basis. The *g*-conjugate of σ ($g \in G$) is the representation $g \mapsto (ghg^{-1})\sigma$, and we say that σ is *G*-stable if for each $g \in G$, σ is equivalent to its *g*-conjugate. In this section we shall assume that σ is not *G*-stable.

Let $\sigma\uparrow\colon G\to \operatorname{GL}(V\uparrow)$ be the representation afforded by $V\uparrow$ relative to the basis

$$e_0, \ldots, e_{d-1}, e_0 a, \ldots, e_{d-1} a, \ldots, e_0 a^{p-1}, \ldots, e_{d-1} a^{p-1}.$$

Note that $G/H = \langle aH \rangle$ has order p, and we are writing $e_i a^j$ rather than $e_i \otimes a^j$. Then

$$a\sigma\uparrow = \begin{pmatrix} 0 & I & 0 \\ & \ddots & \\ 0 & 0 & I \\ a^{p}\sigma & 0 & 0 \end{pmatrix}, \qquad h\sigma\uparrow = \begin{pmatrix} h\sigma & & & \\ & (^{a}h)\sigma & & \\ & & \ddots & \\ & & & (^{a^{p-1}}h)\sigma \end{pmatrix}$$

where $h \in H$ and $a^i h = a^i h a^{-i}$. The elements of $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$ are the matrices commuting with $G\sigma\uparrow$, namely the $p \times p$ block scalar matrices $\operatorname{diag}(\delta, \ldots, \delta)$ where $\delta \in \Delta$.

We shall henceforth assume that V is G-stable. In particular, assume that we know $\alpha \in \operatorname{Aut}_{\mathbb{F}}(V)$ satisfying

(1)
$$(aha^{-1})\sigma = \alpha(h\sigma)\alpha^{-1}$$
 for all $h \in H$.

There are 'practical' methods for computing α . A crude method involves viewing $(ah_i a^{-1})\sigma\alpha = \alpha(h_i\sigma)$, where $H = \langle h_1, \ldots, h_r \rangle$, as a

 $\mathbf{2}$

system of $(d/e)^2 r$ homogeneous linear equations over Δ in $(d/e)^2$ unknowns where $e = |\Delta : \mathbb{F}|$. The solution space is 1-dimensional if V is G-stable, and 0-dimensional otherwise. A more sophisticated method, especially when char(\mathbb{F}) $\neq 0$, involves using the meat-axe algorithm, see [P84], [HR94], [IL00], and [NP95]. There is also a recursive method for finding α which we shall not discuss here.

3. The elements of $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$

In this section we explicitly describe the matrices in $\Gamma = \operatorname{End}_{\mathbb{F}G}(V\uparrow)$ and give an isomorphism $\Gamma \to (\Delta, \alpha, \lambda)$ where $(\Delta, \alpha, \lambda)$ is a general cyclic \mathbb{F} -algebra, see [L91, 14.5]. It is worth recalling that if $\operatorname{char}(\mathbb{F}) \neq 0$, then the endomorphism algebra Δ is commutative. Even in this case, though, Γ can be noncommutative.

Lemma 1. If $i \in \mathbb{Z}$, then $\alpha^{-i}a^i \colon V \to Va^i$ is an $\mathbb{F}H$ -isomorphism between the submodules V and Va^i of $V \uparrow \downarrow$.

Proof. It follows from Eqn (1) that

$$va^{i}ha^{-i} = v\alpha^{i}h\alpha^{-i} \qquad (i \in \mathbb{Z}, v \in V)$$

Replacing v by $v\alpha^{-i}$ gives $v\alpha^{-i}a^{i}h = vh\alpha^{-i}a^{i}$. Hence $\alpha^{-i}a^{i}$ is an $\mathbb{F}H$ -homomorphism, and since it is invertible, it is an $\mathbb{F}H$ -isomorphism. \Box

Conjugation by α induces an automorphism of Δ , which we also call α . [Proof: Conjugating the equation $h\delta = \delta h$ by α and using (1) shows that $\alpha^{-1}\delta\alpha \in \Delta$.] We abbreviate $\alpha^{-1}\delta\alpha = \delta^{\alpha}$ by $\alpha(\delta)$. The reader can determine from the context whether the symbol α refers to an element of $\operatorname{Aut}_{\mathbb{F}}(V)$, or $\operatorname{Aut}_{\mathbb{F}}(\Delta)$.

It follows from Eqn (1) that

$$(a^p h a^{-p})\sigma = \alpha^p h \sigma \alpha^{-p}$$

for all $h \in H$. Hence $\alpha^{-p}(a^p\sigma)$ centralizes H. Therefore $\lambda := \alpha^{-p}(a^p\sigma)$ lies in Δ^{\times} . Setting $h = a^p$ in Eqn (1) shows $a^p\sigma = \alpha(a^p\sigma)\alpha^{-1}$. Thus

$$\alpha(\lambda) = \lambda^{\alpha} = (\alpha^{-p}(a^{p}\sigma))^{\alpha} = \alpha^{-p}(a^{p}\sigma) = \lambda.$$

Conjugating by $\alpha^p = (a^p \sigma) \lambda^{-1}$ induces an inner automorphism:

$$\alpha^{p}(\delta) = \delta^{\alpha^{p}} = \delta^{(a^{p}\sigma)\lambda^{-1}} = \delta^{\lambda^{-1}} = \lambda\delta\lambda^{-1} \qquad (\delta \in \Delta).$$

In summary, we have proved

Lemma 2. The element $\alpha \in \operatorname{Aut}_{\mathbb{F}}V$ satisfying Eqn (1) induces via conjugation an automorphism of $\Delta = \operatorname{End}_{\mathbb{F}H}(V)$, also called α . There exists $\lambda \in \Delta^{\times}$ satisfying

(2a,b,c)
$$\alpha^{-p}(a^p\sigma) = \lambda, \quad \alpha(\lambda) = \lambda, \quad \alpha^p(\delta) = \lambda\delta\lambda^{-1}$$

for all $\delta \in \Delta$.

Theorem 3. The representation $\sigma\uparrow: G \to \operatorname{GL}(V\uparrow)$ afforded by $V\uparrow$ relative to the \mathbb{F} -basis

(3)
$$e_{0}, e_{1}, \dots, e_{d-1}, \dots, e_{0}\alpha^{-i}a^{i}, e_{1}\alpha^{-i}a^{i}, \dots, e_{d-1}\alpha^{-i}a^{i}, \dots, e_{0}\alpha^{-(p-1)}a^{p-1}, e_{1}\alpha^{-(p-1)}a^{p-1}, \dots, e_{d-1}\alpha^{-(p-1)}a^{p-1}$$

for $V\uparrow$ is given by

(4a,b)
$$a\sigma\uparrow = \begin{pmatrix} 0 & \alpha & 0 \\ & \ddots & \\ 0 & 0 & \alpha \\ \alpha\lambda & 0 & 0 \end{pmatrix}, \quad h\sigma\uparrow = \begin{pmatrix} h\sigma & & \\ & h\sigma & & \\ & & \ddots & \\ & & & h\sigma \end{pmatrix}$$

where $h \in H$. Moreover, there is an isomorphism from the general cyclic algebra $(\Delta, \alpha, \lambda)$ to $\operatorname{End}_{\mathbb{F}G}(V^{\uparrow})$

$$(\Delta, \alpha, \lambda) \to \operatorname{End}_{\mathbb{F}G}(V\uparrow) \colon \sum_{i=0}^{p-1} \delta_i x^i \mapsto \sum_{i=0}^{p-1} D(\delta_i) X^i$$

where

(5a,b)
$$X = \begin{pmatrix} 0 & I & 0 \\ & \ddots & \\ 0 & 0 & I \\ \lambda & 0 & 0 \end{pmatrix}, \quad D(\delta) = \begin{pmatrix} \delta & & \\ & \alpha(\delta) & & \\ & & \ddots & \\ & & & \alpha^{p-1}(\delta) \end{pmatrix}$$

and $\delta \in \Delta$.

Proof. By Lemma 1, $\alpha^{-i}a^i \colon V \to Va^i$ is an $\mathbb{F}H$ -isomorphism. Hence $h\sigma\uparrow$ is the $p \times p$ block scalar matrix given by Eqn (4b). Similarly, $a\sigma\uparrow$ is given by Eqn (4a) as

 $(v\alpha^{-i}a^i)a = v\alpha\alpha^{-(i+1)}a^{i+1}$ and $(v\alpha^{-(p-1)}a^{p-1})a = v\alpha(\alpha^{-p}a^p) = v\alpha\lambda$ where the last step follows from Eqn (2a).

We follow [J96] and write $R = \Delta[t; \alpha]$ for the twisted polynomial ring with the usual addition, and multiplication determined by $t\delta = \alpha(\delta)t$ for $\delta \in \Delta$. The right ideal $(t^p - \lambda)R$ is two-sided as

$$t(t^p - \lambda) = (t^p - \lambda)t$$
 and $\delta(t^p - \lambda) = (t^p - \lambda)\lambda^{-1}\delta\lambda$

by virtue of Eqns (2b) and (2c). The general cyclic algebra $(\Delta, \alpha, \lambda)$ is defined to be the quotient ring $R/(t^p - \lambda)R$. Since R is a (left) euclidean domain, the elements of $(\Delta, \alpha, \lambda)$ may be written uniquely as $\sum_{i=0}^{p-1} \delta_i x^i$ where $x = t + (t^p - \lambda)R$, and multiplication is determined by the rules $x^p = \lambda$ and $x\delta = \alpha(\delta)x$ where $\delta \in \Delta$.

The matrices commuting with $H\sigma\uparrow$ are precisely the block matrices $(\delta_{i,j})_{0\leq i,j< p}$ where $\delta_{i,j} \in \Delta$. To compute $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$, we determine the matrices $(\delta_{i,j})$ that commute with $a\sigma\uparrow$. If 0 < i < p-1, then comparing row i-1 of both sides of $(a\sigma\uparrow)(\delta_{i,j}) = (\delta_{i,j})(a\sigma\uparrow)$ shows how to express $\delta_{i,j}$ in terms of the $\delta_{i-1,k}$. Similarly, row p-1 shows how to express $\delta_{p-1,j}$ in terms of $\delta_{0,k}$. It follows that a matrix $(\delta_{i,j})$ commuting with $a\sigma\uparrow$ is completely determined once we know the 0th row $\delta_{0,j}$. We show that the 0th row can be arbitrary. The 0th row of $\sum_{i=0}^{p-1} D(\delta_i)X^i$ is $(\delta_0, \delta_1, \ldots, \delta_{p-1})$. This element lies in Γ as we show that $D(\delta_i), X \in \Gamma$.

To see that $D(\delta) \in \Gamma$, we show that $(a\sigma\uparrow)D(\delta) = D(\delta)(a\sigma\uparrow)$. The first product equals

$$(a\sigma\uparrow)D(\delta) = \begin{pmatrix} 0 & \delta\alpha & & 0\\ & \ddots & \\ 0 & 0 & & \alpha^{-(p-2)}\delta\alpha^{p-1}\\ \alpha\lambda\delta & 0 & & 0 \end{pmatrix}$$

and the second product is identical if $\alpha\lambda\delta = \delta^{\alpha^{p-1}}\alpha\lambda$. However, this is true by Eqn (2c). To see that $X \in \Gamma$, write $a\sigma\uparrow = AX$ where $A = \operatorname{diag}(\alpha, \ldots, \alpha)$. It follows from Eqn (2b) that A and X commute. Therefore $a\sigma\uparrow = AX$ and X commute.

In summary, elements of Γ may be written uniquely as $\sum_{i=0}^{p-1} D(\delta_i) X^i$ where $\delta_i \in \Delta$. Since $X^p = \lambda I$ and $XD(\delta) = D(\alpha(\delta))X$ it follows that the map $\sum_{i=0}^{p-1} \delta_i x^i \mapsto \sum_{i=0}^{p-1} D(\delta_i) X^i$ is an isomorphism $(\Delta, \alpha, \lambda) \to \Gamma$ as claimed. \Box

A consequence of Eqn (2c) is that α has order p or 1 modulo the inner automorphisms of Δ . It follows from the Skolem-Noether theorem [CR90,3.62] that the order of α modulo inner automorphisms is precisely the order of the restriction $\alpha | Z$, where $Z = Z(\Delta)$ is the centre of Δ .

4. The case when $\alpha | Z$ has order p

In this section we determine the structure of $\Gamma := \operatorname{End}_{\mathbb{F}G}(V\uparrow)$ in the case when α induces an automorphism of order p on the field $Z(\Delta)$.

Of primary interest to us is Part (a) of the following classical theorem. Although this result can be deduced from [J96, Theorem 1.1.22] and the fact that $t^p - \lambda$ is a 'two-sided maximal' element of $\Delta[t; \alpha]$, we prefer to give an elementary proof which generalizes [L91, Theorem 14.6].

Theorem 4. Let Γ be the general cyclic algebra $(\Delta, \alpha, \lambda)$ where $\lambda \neq 0$ and $\alpha(\lambda) = \lambda$. Suppose that $\alpha | Z(\Delta)$ has order p, and fixed subfield Z_0 . Then (a) Γ is a simple Z_0 -algebra, (b) $C_{\Gamma}(\Delta) = Z(\Delta)$, (c) $Z(\Gamma) = Z_0$, and (d) $|\Gamma: Z_0| = (p \operatorname{Deg}(\Delta))^2$ where $|\Delta: Z(\Delta)| = \operatorname{Deg}(\Delta)^2$.

Proof. The following proof does not assume that p is prime. Let $\gamma = \gamma_1 x^{i_1} + \cdots + \gamma_r x^{i_r}$ be a nonzero element of an ideal I of Γ , where $0 \leq i_1 < \cdots < i_r < p, \ \gamma_i \in \Delta$, and r is chosen minimal. By minimality, each γ_i is nonzero. To prove Part (a) it suffices to prove that r = 1. Then $I = \Gamma$ as $\gamma_1 x^{i_1} \in I$ is a unit because γ_1 and x are both units. Assume now that r > 1. Then

$$(\gamma_1 \alpha^{i_1}(\delta) \gamma_1^{-1}) \gamma - \gamma \delta = \sum_{k=2}^r \left(\gamma_1 \alpha^{i_1}(\delta) \gamma_1^{-1} \gamma_k - \gamma_k \alpha^{i_k}(\delta) \right) x^{i_k}$$

lies in I for each $\delta \in \Delta$. By the minimality of r, each coefficient of x^{i_k} is zero. This implies that α^{i_1} equals α^{i_k} modulo inner automorphisms for $k = 2, \ldots, r$. This contradiction proves Part (a).

The proofs of Parts (b) and (c) are straightforward, so we shall omit their proofs. Part (d) follows from $|\Gamma : \Delta| = |Z(\Delta) : Z_0| = p$, and $|\Delta : Z(\Delta)| = \text{Deg}(\Delta)^2$ is a square.

Before proceeding to Theorem 5, we define the *left*- and *right-twisted* powers, $\mu^{\exists i}$ and $\mu^{i\Box}$, where $\mu \in \Delta$ and $i \in \mathbb{Z}$. These expressions are like norms, indeed Jacobson [J96] uses the notation $N_i(\mu)$ to suggest this. These "norms", however, are not multiplicative in general. Consider the twisted polynomial ring $\Delta[t; \alpha]$ and define

$$(\mu t)^i = \mu^{\Box i} t^i$$
, and $(t\mu)^i = t^i \mu^{i\Box}$

for $\mu \in \Delta$ and $i \in \mathbb{Z}$. It follows from the power laws $(\mu t)^i (\mu t)^j = (\mu t)^{i+j}$ and $((\mu t)^i)^j = (\mu t)^{ij}$ that

$$\mu^{\exists i}\alpha^{i}(\mu^{\exists j}) = \mu^{\exists (i+j)}, \quad \text{and} \quad \mu^{\exists i}\alpha^{i}(\mu^{\exists i})\cdots\alpha^{i(j-1)}(\mu^{\exists i}) = \mu^{\exists (ij)}$$

for $i, j \in \mathbb{Z}$. Similar laws hold for right-twisted powers. The left-twisted powers of nonnegative integers can be defined by the recurrence relation

(6)
$$\mu^{\exists 0} = 1$$
, and $\mu^{\exists (i+1)} = \mu^{\exists i} \alpha^i(\mu) = \mu \alpha(\mu^{\exists i})$ for $i \ge 0$,

and negative powers can be defined by $\mu^{\Box - i} = \alpha^i (\mu^{\Box i})^{-1}$.

It is important in the sequel whether or not λ^{-1} has a left-twisted *p*th root.

Theorem 5. Let V be a G-stable irreducible $\mathbb{F}H$ -module where $H \triangleleft G$ and |G/H| = p is prime. Let α and λ be as in Lemma 2. Suppose that $\alpha | Z$ has order p where $Z = Z(\Delta)$ and $\Delta = \operatorname{End}_{\mathbb{F}G}(V)$.

 $\mathbf{6}$

(a) If the equation $\mu^{\exists p} = \lambda^{-1}$ has no solution for $\mu \in \Delta^{\times}$, then $V \uparrow$ is irreducible, and $\operatorname{End}_{\mathbb{F}G}(V \uparrow)$ is isomorphic to the general cyclic algebra $(\Delta, \alpha, \lambda)$ as per Theorem 3.

(b) If $\mu \in \Delta^{\times}$ satisfies $\mu^{\exists p} = \lambda^{-1}$, then $V \uparrow = U(\mu_0) \dotplus \cdots \dotplus U(\mu_{p-1})$ where

$$U(\mu_j) = V \sum_{i=0}^{p-1} \mu_j^{\exists i} \alpha^{-i} a^i \qquad (j = 0, 1, \dots, p-1)$$

are isomorphic irreducible submodules satisfying $U(\mu_j) \downarrow \cong V$, and where $\mu_j^{\exists p} = \lambda^{-1}$. Moreover, if $\rho: G \to \operatorname{GL}(U(\mu))$ is the representation afforded by $U(\mu)$ relative to the basis e'_0, \ldots, e'_{p-1} where

$$e'_{j} = e_{j} \sum_{i=0}^{p-1} \mu^{\exists i} \alpha^{-i} a^{i} \qquad (j = 0, 1, \dots, d-1),$$

then $a\rho = \alpha \mu^{-1}$, $h\rho = h\sigma$ for $h \in H$, and

$$\operatorname{End}_{\mathbb{F}G}(U(\mu)) = C_{\Delta}(\alpha \mu^{-1}) = \{\delta \in \Delta \mid \delta^{\alpha} = \delta^{\mu}\}$$

Proof. By Theorem 4(a), $(\Delta, \alpha, \lambda)$ is a simple ring. In Part(a) more is true: $(\Delta, \alpha, \lambda)$ is a division ring by [J96, Theorem 1.3.16]. By Theorem 3, $(\Delta, \alpha, \lambda)$ is isomorphic to $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$ and so we have proved that $V\uparrow$ is irreducible as desired.

Consider Part (b). Let $s = \mu t$ be an element of the twisted polynomial ring $\Delta[t; \alpha]$, then $s^i = (\mu t)^i = \mu^{\Box i} t^i$ and

$$s\delta = \mu t\delta = (\mu \alpha(\delta)\mu^{-1})\mu t = \mu \alpha(\delta)\mu^{-1}s.$$

Therefore the map $\Delta[t; \alpha] \to \Delta[s; \alpha \mu^{-1}] \colon \sum_{i=0}^{p-1} \delta_i t^i \mapsto \sum_{i=0}^{p-1} \delta_i (\mu^{\exists i})^{-1} s^i$ is an isomorphism. We are abusing notation here by identifying $\alpha \mu^{-1}$ in $\operatorname{Aut}_{\mathbb{F}}(V)$ with $\delta \mapsto \delta^{\alpha \mu^{-1}}$ in $\operatorname{Aut}_{\mathbb{F}}(\Delta)$. If $y = \mu x$, then

$$y^p = (\mu x)^p = \mu^{\Box p} \lambda = \lambda^{-1} \lambda = 1.$$

By taking quotients we get an isomorphism $(\Delta, \alpha, \lambda) \to (\Delta, \alpha \mu^{-1}, 1)$ given by

$$\sum_{i=0}^{p-1} \delta_i x^i \mapsto \sum_{i=0}^{p-1} \delta_i (\mu^{\Box i})^{-1} y^i$$

where $x = t + (t^{p} - \lambda)$ and $y = s + (s^{p} - 1)$.

As $y^p - 1 = (y - 1)(y^{p-1} + \dots + y + 1)$, and $\Delta[s, \alpha \mu^{-1}]$ is right euclidean it follows that $(y - 1)(\Delta, \alpha \mu^{-1}, 1)$ is a maximal right ideal of $(\Delta, \alpha \mu^{-1}, 1)$. Now y - 1 corresponds to $\mu x - 1$ which corresponds to $D(\mu)X - 1$ whose kernel gives rise to the irreducible submodule $U(\mu)$ of $V \uparrow$ in the statement of Part(b). We shall reprove this, and prove a little more, using a more elementary argument.

S. P. GLASBY

Let U be a submodule of $V\uparrow$ satisfying $U\downarrow \cong V$. Let $\phi: V \to V\uparrow$ be an $\mathbb{F}H$ -homomorphism such that $V\phi = U\downarrow$. Let $\pi_i: V\uparrow \to Va^i$ be the $\mathbb{F}H$ -epimorphism given by $(\sum_{i=0}^{p-1} v_i \alpha^{-i} a^i)\pi_i = v_i \alpha^{-i} a^i$. Then $\delta_i = \phi \pi_i a^{-i} \alpha^i$ is an $\mathbb{F}H$ -homomorphism $V \to V$, or an element of Δ . Since $\pi_0 + \pi_1 + \cdots + \pi_{p-1}$ is the identity map 1: $V\uparrow \to V\uparrow$, it follows that

$$\phi = \phi 1 = \phi(\pi_0 + \pi_1 + \dots + \pi_{p-1}) = \sum_{i=0}^{p-1} \delta_i \alpha^{-i} a^i.$$

We now view ϕ as a map $V \to U$ and note that U = Ua. Then $\alpha^{-1}a \colon V \to Va$, $a^{-1}\phi a \colon Va \to Ua$ and $\phi^{-1} \colon Ua \to V$ are each $\mathbb{F}H$ -isomorphisms. Hence their composite, $(\alpha^{-1}a)(a^{-1}\phi a)\phi^{-1}$ is an isomorphism $V \to V$, denoted μ^{-1} where $\mu \in \Delta^{\times}$. Rearranging gives $\phi a = \alpha \mu^{-1} \phi$. Therefore,

$$(v\phi)a = \left(v\sum_{i=0}^{p-1}\delta_i\alpha^{-i}a^i\right)a = v\alpha\mu^{-1}\sum_{i=0}^{p-1}\delta_i\alpha^{-i}a^i$$

for all $v \in V$. The expression $(v\delta_i \alpha^{-i}a^i)a$ equals

$$v\delta_i \alpha \alpha^{-(i+1)} a^{i+1} = v\alpha \delta_i^{\alpha} \alpha^{-(i+1)} a^{i+1} = v\alpha \mu^{-1} \delta_{i+1} \alpha^{-(i+1)} a^{i+1}.$$

Setting i = p - 1 gives

$$(v\delta_{p-1}\alpha^{-(p-1)}a^{p-1})a = v\alpha\delta_{p-1}^{\alpha}\alpha^{-p}a^{p} = v\alpha\delta_{p-1}^{\alpha}\lambda = v\alpha\mu^{-1}\delta_{0}.$$

Therefore $\delta_i^{\alpha} = \mu^{-1} \delta_{i+1}$ for $i = 0, \ldots, p-2$ and $\delta_{p-1}^{\alpha} \lambda = \mu^{-1} \delta_0$. If $\delta_0 = 0$, then each $\delta_i = 0$ and $\phi = 0$, a contradiction. Thus $\delta_0 \neq 0$ and as $V \delta_0^{-1} \phi = U$, we may assume that $\delta_0 = 1$. It follows from Eqn (6) that $\delta_i = \mu^{\Box i}$ is the solution to the recurrence relation: $\delta_0 = 1$ and $\mu \delta_i^{\alpha} = \delta_{i+1}$ for $i \ge 0$. Furthermore $\mu \delta_{p-1}^{\alpha} = \lambda^{-1}$ implies that $\mu^{\Box p} = \lambda^{-1}$. In summary, any submodule U of $V \uparrow$ satisfying $U \downarrow \cong V$ equals $U(\mu)$ for some μ satisfying $\mu^{\Box p} = \lambda^{-1}$. Furthermore, by retracing the above argument, if $\mu^{\Box p} = \lambda^{-1}$, then $U(\mu)$ is an irreducible submodule of $V \uparrow$ satisfying $U \downarrow \cong V$.

As $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$ is a simple ring, $V\uparrow$ is a direct sum of isomorphic simple submodules. Therefore, $V\uparrow = U(\mu_0) \dotplus \cdots \dotplus U(\mu_{p-1})$ as desired. It follows from Lemma 1 that the representation $\rho: G \to \operatorname{GL}(V)$ satisfies $a\rho = \alpha\mu^{-1}$ and $h\rho = h\sigma$ for $h \in H$. Consequently, the matrices commuting with $G\rho$ equal the elements of Δ centralizing $a\rho$. Hence $\operatorname{End}_{\mathbb{F}G}(U(\mu)) = C_{\Delta}(\alpha\mu^{-1})$ as claimed. \Box

5. The case when α is inner

In this section assume that $\alpha | Z(\Delta)$ has order 1, or equivalently by the Skolem-Noether theorem, that α is inner. Fix $\varepsilon \in \Delta^{\times}$ such that α is the

inner automorphism $\alpha(\delta) = \varepsilon^{-1}\delta\varepsilon$. Clearly $\alpha(\varepsilon) = \varepsilon$ and by Eqn (2c) $\varepsilon^{-p}\delta\varepsilon^p = \alpha^p(\delta) = \lambda\delta\lambda^{-1}$. Therefore, $\eta = \varepsilon^p\lambda \in Z(\Delta)$. If $y = \varepsilon x$, then $y^p = \varepsilon^{-p}x^p = \varepsilon^p\lambda = \eta$ and $y\delta = \varepsilon x\delta = \varepsilon\delta^{\varepsilon}x = \delta \varepsilon x = \delta y$. Hence

(8)
$$(\Delta, \alpha, \lambda) \to (\Delta, 1, \eta) \colon \sum_{i=0}^{p-1} \delta_i x^i \mapsto \sum_{i=0}^{p-1} \delta_i \varepsilon^{-i} y^i$$

is an isomorphism. Thus we may untwist $\operatorname{End}_{\mathbb{F}G}(V\uparrow)$.

Theorem 6. Let V be a G-stable irreducible $\mathbb{F}H$ -module where $H \triangleleft G$ and |G/H| = p is prime. Suppose that α induces the inner automorphism $\alpha(\delta) = \delta^{\varepsilon}$ of the division algebra $\Delta = \operatorname{End}_{\mathbb{F}H}(V)$. Then $\eta = \varepsilon^p \lambda \in Z^{\times}$ where $Z = Z(\Delta)$. Suppose that $s^p - \eta = \nu(s)\mu(s)$ where $\mu(s) = \sum_{i=0}^{m} \mu_i s^i$ and $\nu(s) = \sum_{i=0}^{p-m} \nu_i s^i$, are monic polynomials in $\Delta[s]$. Then $W_{\mu} = \sum_{i=0}^{m-1} V \sum_{j=0}^{p-m} \nu_j \varepsilon^{i+j} \alpha^{-(i+j)} a^{i+j}$ is a submodule of $V \uparrow$. Let $\rho: G \to \operatorname{GL}(W_{\mu})$ be the representation afforded by W_{μ} relative to the basis

(9)
$$e'_0, \dots, e'_{d-1}, \dots, e'_j(\varepsilon X)^k, \dots, e'_0(\varepsilon X)^{m-1}, \dots, e'_{d-1}(\varepsilon X)^{m-1}$$

where

$$e'_k = e_k \sum_{j=0}^{p-m} \nu_j \varepsilon^j \alpha^{-j} a^j = e_k \sum_{j=0}^{p-m} \nu_j (\varepsilon X)^j$$

and X is given by Eqn (5a). Then

(10)
$$a\rho = \alpha \varepsilon^{-1} \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \\ 0 & 0 & 1 \\ -\mu_0 & -\mu_1 & -\mu_{m-1} \end{pmatrix},$$

and $h\rho = diag(h\sigma, \ldots, h\sigma)$ where $h \in H$. Moreover,

$$\operatorname{End}_{\mathbb{F}G}(W_{\mu}) = \left\{ \sum_{i=0}^{m-1} \delta_i (a\rho)^i \mid \delta_i \in \Delta \right\}.$$

If $\mu(s) \in Z[s]$, then $\operatorname{End}_{\mathbb{F}G}(W_{\mu}) \cong \Delta[s]/\mu(s)\Delta[s] \cong \Delta \otimes_{Z} \mathbb{K}$ where $\mathbb{K} = Z[s]/\mu(s)Z[s]$.

Proof. Arguing as in Theorem 5, we have a series of right ideals:

$$\nu(s)\Delta[s] \subseteq \Delta[s], \ \nu(y)(\Delta, 1, \eta) \subseteq (\Delta, 1, \eta), \ \nu(\varepsilon x)(\Delta, \alpha, \lambda) \subseteq (\Delta, \alpha, \lambda),$$

and $\sum_{i=0}^{n} D(\nu_i)(\varepsilon X)^i \Gamma$ is a right ideal of $\Gamma = \operatorname{End}_{\mathbb{F}G}(V\uparrow)$. This right ideal corresponds to the submodule $V\uparrow \sum_{i=0}^{n} D(\nu_i)(\varepsilon X)^i \Gamma$ of $V\uparrow$. It follows from Eqn (5a) and $(\varepsilon X)^p - \eta = 0$ that the minimum polynomial of εX equals $s^p - \eta$.

Let $v' = v\nu(\varepsilon X)$ where $v \in V$. Then

(11)
$$v'\mu(\varepsilon X) = v\nu(\varepsilon X)\mu(\varepsilon X) = v((\varepsilon X)^p - \eta) = v 0 = 0.$$

This proves that (9) is a basis for

$$W_{\mu} = \operatorname{im} \nu(\varepsilon X) = \ker \nu(\varepsilon X) = \sum_{i=0}^{m-1} V \sum_{j=0}^{n} \nu_j \varepsilon^{i+j} \alpha^{-(i+j)} a^{i+j}$$

It follows from Lemma 1 that $h\rho = \text{diag}(h\sigma, \ldots, h\sigma)$ is a block scalar matrix $(h \in H)$. Since $a = \alpha X$,

(12)
$$v'(\varepsilon X)^{i}a = v'(\varepsilon X)^{i}\alpha X = v'\alpha\varepsilon^{-1}(\varepsilon X)^{i+1}.$$

It follows from Eqns (11) and (12) that the matrix for $a\rho$ is correct.

It is now a simple matter to show that $\left\{\sum_{i=0}^{m-1} \delta_i(a\rho)^i \mid \delta_i \in \Delta\right\}$ is contained in $\operatorname{End}_{\mathbb{F}G}(W_{\mu})$. A familiar calculation shows that an element of $\operatorname{End}_{\mathbb{F}G}(W_{\mu})$ is determined by the entries in its top row. As this may be arbitrary, we have found all the elements of $\operatorname{End}_{\mathbb{F}G}(W_{\mu})$. \Box

It follows from Theorem 6 that a necessary condition for W_{μ} to be irreducible is that $\mu(s)$ is irreducible in $\Delta[s]$. Lemma 7 describes an important case when $\operatorname{End}_{\mathbb{F}G}(W_{\mu})$ is a division ring, and hence W_{μ} is irreducible. The following proof follows Prof. Deitmar's suggestion [D02].

Lemma 7. Let Δ be a division algebra with center \mathbb{F} , and let $\mu(s) \in \mathbb{F}[s]$ be irreducible of prime degree. Suppose that no $\delta \in \Delta$ satisfies $\mu(\delta) = 0$. Then the quotient ring $\Delta[s]/\mu(s)\Delta[s]$ is a division algebra.

Proof. Let $\mathbb{K} = \mathbb{F}[s]/\mu(s)\mathbb{F}[s]$. Then \mathbb{K} is a field and $|\mathbb{K} : \mathbb{F}| = \deg \mu(s)$ is prime. Clearly $\mu(s)\Delta[s]$ is a two-sided ideal of $\Delta[s]$, and $\Delta[s]/\mu(s)\Delta[s]$ is isomorphic to $\Delta_{\mathbb{K}} = \Delta \otimes_{\mathbb{F}} \mathbb{K}$. By [L91, 15.1(3)], $\Delta_{\mathbb{K}}$ is a central simple \mathbb{K} -algebra, and hence is isomorphic to $M_n(D)$ for some division algebra D over \mathbb{F} . The *degree* of D and the *Schur index* of $\Delta_{\mathbb{K}}$ are defined as follows

$$\operatorname{Deg}(D) = (\dim_{\mathbb{F}} D)^{1/2}$$
 and $\operatorname{Ind}(\Delta_{\mathbb{K}}) = \operatorname{Deg}(D).$

By [P82, Prop. 13.4], $\operatorname{Ind}(\Delta_{\mathbb{K}})$ divides $\operatorname{Ind}(\Delta)$, and $\operatorname{Ind}(\Delta)$ divides $|\mathbb{K} : \mathbb{F}| \operatorname{Ind}(\Delta_{\mathbb{K}})$. Thus either

$$\operatorname{Ind}(\Delta_{\mathbb{K}}) = \operatorname{Ind}(\Delta) = \operatorname{Deg}(\Delta) = \operatorname{Deg}(D_{\mathbb{K}})$$

and $\Delta_{\mathbb{K}}$ is a division algebra by [P82, Prop. 13.4(ii)], or Ind(Δ) equals $|\mathbb{K} : \mathbb{F}|$ Ind($\Delta_{\mathbb{K}}$). If the second case occurred, then by [P82, Cor. 13.4], \mathbb{K} is isomorphic to a subfield of Δ , and so $\mu(s)$ has a root in Δ , contrary to our hypothesis.

If $\eta \notin \Delta^p$, then $\eta \notin Z^p$ and so $s^p - \eta$ is irreducible in Z[s], and it follows from Lemma 7 that $V \uparrow = W_{s^p - \eta}$ is irreducible. Note that $\operatorname{End}_{\mathbb{F}G}(V \uparrow) \cong \Delta \otimes Z[\eta^{1/p}]$ is a division algebra.

6. The case when α is inner and $\xi^p = \eta$

In this section we shall assume that $\xi \in \Delta^{\times}$ satisfies $\xi^p - \eta = 0$. Let $y = \varepsilon x$ and $z = \xi^{-1}y = \xi^{-1}\varepsilon x$. It is useful to consider the isomorphisms $(\Delta, \alpha, \lambda) \to (\Delta, 1, \eta) \to (\Delta, 1, 1)$ defined by $x \mapsto \varepsilon^{-1}y$ and $y \mapsto \xi z$. Note y and z are central in $(\Delta, 1, \eta)$ and $(\Delta, 1, 1)$ respectively, and $y^p = \eta$ and $z^p = 1$.

Theorem 8. Let V be a G-stable irreducible $\mathbb{F}H$ -module where $H \triangleleft G$ and |G/H| = p is prime. Suppose that α induces the inner automorphism $\alpha(\delta) = \delta^{\varepsilon}$ of the division algebra $\Delta = \operatorname{End}_{\mathbb{F}H}(V)$. Set $\eta = \varepsilon^{p}\lambda$ and let $\xi, \omega \in \Delta$ satisfy $\xi^{p} = \eta$ and $\omega^{p} = 1$. Then $\xi \in Z = Z(\Delta)$. (a) If char(\mathbb{F}) $\neq p$ and $\omega \neq 1$, then $V \uparrow$ is an internal direct sum

$$V\uparrow = U(\xi) \dotplus U(\xi\omega) \dotplus \dots \dotplus U(\xi\omega^{p-1})$$

where

$$U(\xi\omega^j) = V \sum_{i=0}^{p-1} (\xi\omega^j)^{-i} \varepsilon^i \alpha^{-i} a^i$$

is irreducible, and $U(\xi\omega) \cong U(\xi\omega')$ if and only if ω and ω' are conjugate in Δ . If $\mu(s)$ is an irreducible factor of $s^p - \eta$ in Z[s], then W_{μ} defined in Theorem 6 is a Wedderburn component of $V\uparrow$, and $W_{\mu} = U(\theta_1) \dotplus \cdots \dotplus U(\theta_n)$ where $\theta_1, \ldots, \theta_n$ are the roots of $\mu(s)$ in the field $Z(\xi, \omega)$. In addition, the representation $\rho_{\theta} \colon G \to \operatorname{GL}(U(\theta))$ afforded by $U(\theta)$ relative to the basis e'_0, \ldots, e'_{d-1} where

$$e'_{j} = e_{j} \sum_{i=0}^{p-1} \theta^{-i} \varepsilon^{i} \alpha^{-i} a^{i}$$

satisfies

(12a,b)
$$a\rho_{\theta} = \alpha \varepsilon^{-1} \theta$$
 and $h\rho_{\theta} = h\sigma$

for $h \in H$, and $\operatorname{End}_{\mathbb{F}G}(U(\theta)) = C_{\Delta}(\theta)$.

(b) If char(\mathbb{F}) = p, then $\omega = 1$ and $V \uparrow$ is uniserial with unique composition series $\{0\} = W_0 \subset W_1 \subset \cdots \subset W_p = V \uparrow$ where

$$W_k = \sum_{i=1}^k V \sum_{j=0}^{p-i} \binom{i+j-1}{j} \xi^{-j} \varepsilon^j \alpha^{-j} a^j.$$

Moreover, $W_{k-1}/W_k \cong U(\xi)$ for $k = 1, \ldots, p$ and $\operatorname{End}_{\mathbb{F}G}(U(\xi)) = \Delta$.

Proof. Since $z\delta = \delta z$, we see that $(\xi^{-1}\varepsilon x)\delta = \delta(\xi^{-1}\varepsilon x)$. This implies that $\xi^{-1}\delta = \delta\xi^{-1}$ and so $\xi \in Z$. Case (a): Now $(\xi\omega)^p = \xi^p \omega^p = \eta$, hence

(13)
$$y^p - \eta = y^p - (\xi\omega)^p = (y - \xi\omega) \left(\sum_{i=0}^{p-1} (\xi\omega)^{p-1-i} y^i\right).$$

Therefore $V \uparrow \sum_{i=0}^{p-1} (\xi \omega)^{p-1-i} (\varepsilon X)^i \Gamma$ is a submodule of $V \uparrow$ where X is given by Eqn (5a). We show directly that $U(\xi \omega)$ is a submodule of $V \uparrow$. This follows from

(14)
$$(v(\xi\omega)^{-i}\varepsilon^{i}\alpha^{-i}a^{i})a = v\alpha(\alpha^{-1}(\xi\omega)^{-i}\varepsilon^{i}\alpha)\alpha^{-(i+1)}a^{i+1}$$
$$= v\alpha\varepsilon^{-1}\xi\omega(\xi\omega)^{-(i+1)}\varepsilon^{i+1}\alpha^{-(i+1)}a^{i+1}$$

and setting i = p - 1 in the right-hand side of Eqn (14) gives

$$v\alpha\varepsilon^{-1}\xi\omega(\xi\omega)^{-p}\varepsilon^{p}\alpha^{-p}a^{p} = v\alpha\varepsilon^{-1}\xi\omega\eta^{-1}\varepsilon^{p}\lambda = v\alpha\varepsilon^{-1}\xi\omega.$$

As $U(\xi\omega) \downarrow \cong V$, we see that $U(\xi\omega)$ is an irreducible $\mathbb{F}G$ -submodule of $V\uparrow$. Setting $\theta = \xi\omega$ establishes the truth of Eqns (12a,b).

We may calculate $\operatorname{Hom}(U(\xi\omega), U(\xi\omega'))$ directly by finding all δ in $\operatorname{End}_{\mathbb{F}}(V)$ that intertwine $\rho_{\xi\omega}$ and $\rho_{\xi\omega'}$. As δ intertwines $h\rho_{\xi\omega}$ and $h\rho_{\xi\omega'}$, it follows that δ commutes with $H\sigma$, and hence $\delta \in \Delta$. Also

$$\delta(\alpha\varepsilon^{-1}\xi\omega) = (\alpha\varepsilon^{-1}\xi\omega')\delta$$

so $\delta^{\alpha\varepsilon^{-1}}\xi\omega = \xi\omega'\delta$. Since $\xi \in Z^{\times}$ and $\delta^{\alpha\varepsilon^{-1}} = \delta$, this amounts to $\delta\omega = \omega'\delta$. Setting i = j shows that $\operatorname{End}_{\mathbb{F}G}(U(\xi\omega)) = C_{\Delta}(\omega)$.

The Galois group $\operatorname{Gal}(Z(\omega):Z)$ is cyclic of order dividing p-1. Also ω and ω' are conjugate in $\operatorname{Gal}(Z(\omega):Z)$ if and only if they share the same minimal polynomial over Z. The latter holds by Dixon's Theorem [L91, 16.8] if and only if ω and ω' are conjugate in Δ . Note that ω and ω' share the same minimal polynomial over Z precisely when $\xi\omega$ and $\xi\omega'$ share the same minimal polynomial. This proves that W_{μ} is a Wedderburn component of $V\uparrow$.

Case (b): Suppose now that $\operatorname{char}(\mathbb{F}) = p$. Then $\omega = 1$ and Eqn (13) becomes $y^p - \eta = (y - \xi)^p = (y - \xi)(\sum_{i=0}^{p-1} {p-1 \choose i} (-\xi)^{p-1-i} y^i)$. As

$$\Gamma = \operatorname{End}_{\mathbb{F}G}(V\uparrow) \cong (\Delta, \alpha, \lambda) \cong (\Delta, 1, \eta) \cong (\Delta, 1, 1) \cong \Delta[z]/(z-1)^p \Delta[z]$$

has a unique composition series, so too does $V\uparrow$. By noting that $z = \xi^{-1}\varepsilon x$ and $D(\xi^{-1}\varepsilon) = \xi^{-1}\varepsilon$, we see that $W_i = V\uparrow(\xi^{-1}\varepsilon X - 1)^{p-i}\Gamma$ defines the unique composition series for $V\uparrow$ where X is given by Eqn (5a).

Let R be the diagonal matrix $\operatorname{diag}(1, \xi^{-1}\varepsilon, \dots, (\xi^{-1}\varepsilon)^{p-1})$, and let S be the matrix whose (i, j)th block is the binomial coefficient $\binom{i}{j}$ where

 $0 \leq i,j < p.$ A direct calculation verifies that $R(\xi^{-1}\varepsilon X)R^{-1} = C$ and $S^{-1}CS = J$ where

$$C = \begin{pmatrix} 0 & 1 & & 0 \\ & \ddots & \\ 0 & 0 & & 1 \\ 1 & 0 & & 0 \end{pmatrix} \quad \text{and} \quad J = \begin{pmatrix} 1 & 1 & & \\ & \ddots & & \\ & & 1 & 1 \\ & & & 1 \end{pmatrix}.$$

Therefore $\xi^{-1} \varepsilon X - 1 = T^{-1} (J - 1) T$ where $T = S^{-1} R$, and hence

$$W_k = V \uparrow (\xi^{-1} \varepsilon X - 1)^{p-k} = V \uparrow T^{-1} (J-1)^{p-k} T = V \uparrow (J-1)^{p-k} T.$$

It is easily seen that $\operatorname{im}(J-1)^{p-k} = \ker(J-1)^k$ is the subspace $(0,\ldots,0,V,\ldots,V)$ where the first V is in column p-k. The (i,j)th entry of $T = S^{-1}R$ is $(-1)^{i+j} {i \choose j} (\xi^{-1}\varepsilon)^j$. The last row of T gives

$$W_1 = V \sum_{j=0}^{p-1} (-1)^{p-1+j} {p-1 \choose j} (\xi^{-1}\varepsilon)^j \alpha^{-j} a^j.$$

More generally, the last k rows of T give

$$W_{k} = \sum_{i=1}^{k} V \sum_{j=0}^{p-i} (-1)^{p-i+j} {p-i \choose j} (\xi^{-1}\varepsilon)^{j} \alpha^{-j} a^{j}.$$

Since $p - i - \ell = -(i + \ell)$ in a field (such as \mathbb{F}) of characteristic p, we see that $\binom{p-i}{i} = (-1)^j \binom{i+j-1}{i}$ and the formula for W_k simplifies to

$$W_k = \sum_{i=1}^k V \sum_{j=0}^{p-i} \binom{i+j-1}{j} \xi^{-j} \varepsilon^j \alpha^{-j} a^j.$$

Setting k = 1 shows $W_1 = U(\xi)$. A direct calculation shows that $W_{i-1}/W_i \cong U(\xi)$. We showed in Part (a) that $\operatorname{End}_{\mathbb{F}G}(U(\xi))$ equals $C_{\Delta}(\xi) = \Delta$.

In Case (a), $C_{\Delta}(\xi\omega)$ equals Δ precisely when $\omega \in Z$. If Δ is the rational quaternions, and ω is a primitive cube root of unity, then $C_{\Delta}(\omega)$ equals $\mathbb{Q}(\omega)$. There are infinitely many primitive cube roots of 1 in this case, and they form a conjugacy class of Δ by Dixon's Theorem (as they all satisfy the irreducible polynomial $s^2 + s + 1$ over \mathbb{Q}). Thus isomorphism of the submodules $U(\xi\omega)$ is governed by conjugacy in Δ , and not conjugacy in $Gal(\mathbb{Q}(\omega):\mathbb{Q})$.

Finally, it remains to generalize Theorem 8(a) to allow for the possibility that Δ may not contain a primitive *p*th root of 1.

Theorem 9. Let V be a G-stable irreducible $\mathbb{F}H$ -module where $H \triangleleft G$ and |G/H| = p is prime. Suppose that $\varepsilon, \xi \in \Delta$ satisfy $\alpha(\delta) = \delta^{\varepsilon}$ $(\delta \in \Delta)$ and $\xi^p - \eta = 0$ where $\eta = \varepsilon^p \lambda \in Z = Z(\Delta)$. In addition, suppose that $\operatorname{char}(\mathbb{F}) \neq p$. Then $V \uparrow$ is an internal direct sum

$$V\uparrow = W_{\mu_1} \dotplus \cdots \dotplus W_{\mu_r}$$

where $s^p - \eta = \mu_1(s) \cdots \mu_r(s)$ is a factorization into monic irreducibles over Z, and where W_{μ} defined in Theorem 6. If $\mu(s)$ is a monic irreducible factor of $s^p - \eta$, and $\mu(s) = \nu_1(s) \cdots \nu_n(s)$ where the $\nu_i(s)$ are monic and irreducible in $\Delta[s]$, then W_{μ} is a Wedderburn component of $V\uparrow$, and $W_{\mu} \cong W_{\nu_n}^{\oplus n}$ where W_{ν_n} is an irreducible FG-module and End_{FG}(W_{ν_n}) is given in Theorem 6. In addition,

$$\operatorname{End}_{\mathbb{F}G}(W_{\nu_n}) \cong B/\nu_n(s)\Delta[s]$$

where $B = \{\delta(s) \in \Delta[s] \mid \delta(s)\nu_n(s) \in \nu_n(s)\Delta[s]\}$ is the idealizer of the right ideal $\nu_n(s)\Delta[s]$.

Proof. Since char(\mathbb{F}) $\neq p$, the monic polynomials $\mu_1(s), \ldots, \mu_r(s)$ are distinct and pairwise coprime in Z[s]. From this it follows that V^{\uparrow} equals $W_{\mu_1} + \cdots + W_{\mu_r}$. By Theorem 6, $\operatorname{End}_{\mathbb{F}G}(W_{\mu}) \cong \Delta_{\mathbb{K}}$ where $\Delta_{\mathbb{K}} \cong \Delta[s]/\mu(s)\Delta[s] \cong \Delta \otimes_Z \mathbb{K}$, and \mathbb{K} is the field $Z[s]/\mu(s)Z[s]$. By [L91, 15.1(3)], $\Delta_{\mathbb{K}}$ is a simple ring. Therefore $\mu(s)\Delta[s]$ is a twosided maximal ideal of $\Delta[s]$, and so $\mu(s)$ is called a two-sided maximal element of $\Delta[s]$. By [J96, Theorem 1.2.19(b)], $\Delta_{\mathbb{K}} \cong M_n(D)$ where Dis the division ring $B/\nu_n(s)\Delta[s]$. Moreover, $Z(\Delta_{\mathbb{K}}) \cong Z(M_n(D))$ so $\mathbb{K} \cong Z(D)$. Thus $W_{\mu} \cong W_{\nu_n}^{\oplus n}$ where W_{ν_n} is an irreducible submodule of V^{\uparrow} and $\operatorname{End}_{\mathbb{F}G}(W_{\nu_n}) \cong D$. In addition, ν_1, \ldots, ν_n are similar [J96, Def. 1.2.7], and $W_{\nu_1}, \ldots, W_{\nu_n}$ are isomorphic.

If $\mu(s), \mu'(s)$ are distinct monic irreducible factors of $s^p - \eta$ in Z[s]and $\nu(s), \nu'(s)$ in $\Delta[s]$ are monic irreducible factors of $\mu(s)$ and $\mu'(s)$ respectively, then it follows from [J96, Def. 1.2.7] that $\nu(s)$ and $\nu'(s)$ are not similar. This means that an irreducible summand of W_{μ} is not isomorphic to an irreducible summand of $W_{\mu'}$. Hence the W_{μ} are Wedderburn components as claimed.

Acknowledgment

I am very grateful to Prof. A. D. H. Deitmar for providing a proof [D02] of Lemma 7 in the case when $s^p - \eta$ has no root in Δ . I would also like to thank the referee for his/her helpful suggestions.

References

[CR90] C.W. Curtis and I. Reiner, Methods of Representation Theory: with Applications to Finite Groups and Orders, Vol. 1, Classic Library Edn, John Wiley and Sons, 1990. [D02] A.D.H. Deitmar, sci.math.research, September 6, 2002.

- [GK96] S.P. Glasby and L.G. Kovács, Irreducible modules and normal subgroups of prime index, Comm. Algebra 24 (1996), no. 4, 1529–1546. (MR 97a:20012)
- [IL00] G. Ivanyos and K. Lux, Treating the exceptional cases of the MeatAxe, Experiment. Math. 9 (2000), no. 3, 373–381. (MR 2001j:16067)
- [HR94] D.F. Holt and S. Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 1–16. (MR 95e:20023)
 - [J96] N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer-Verlag, 1996.
 - [L91] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics 131, Springer-Verlag, 1991.
- [NP95] P.M. Neumann and C.E. Praeger, Cyclic matrices over finite fields, J. London Math. Soc. 52 (1995), no. 2, 263–284. (MR 96j:15017)
 - [P84] R.A. Parker, The computer calculation of modular characters (the meat-axe), Computational group theory (Durham, 1982), 267–274, Academic Press, London, 1984. (MR 84k:20041)
 - [P82] R. S. Pierce, Associative Algebras, Graduate Texts in Mathematics 88, Springer-Verlag, 1982.

S. P. GLASBY DEPARTMENT OF MATHEMATICS CENTRAL WASHINGTON UNIVERSITY WA 98926-7424, USA GlasbyS@cwu.edu