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Abstract. Let G be a finite group and H a normal subgroup
of prime index p. Let V be an irreducible FH-module and U a
quotient of the induced FG-module V ↑. We describe the struc-
ture of U , which is semisimple when char(F) 6= p and uniserial if
char(F) = p. Furthermore, we describe the division rings arising
as endomorphism algebras of the simple components of U . We use
techniques from noncommutative ring theory to study EndFG(V ↑)
and relate the right ideal structure of EndFG(V ↑) to the submodule
structure of V ↑.
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1. Introduction

Throughout this paper G will denote a finite group and H will denote
a normal subgroup of prime index p. Furthermore, V will denote an
irreducible (right) FH-module, and V ↑ = V ⊗FH FG is the associated
induced FG-module. Let a be an element of G not in H , and let
∆ := EndFH(V ) and Γ := EndFG(V ↑).

This paper is motivated by the following problem: “Given an irre-
ducible FH-module V , where F is an arbitrary field, and a quotient U
of V ↑, determine the submodule structure of U and the endomorphism
algebras of the simple modules.” By Schur’s lemma, ∆ is a division
algebra over F, so we shall need techniques from noncommutative ring
theory.

We determine the submodule structure of U by explicitly realizing
EndFG(U) as a direct sum of minimal right ideals, or as a local ring.
It suffices to solve our problem in the case when U = V ↑. Henceforth
U = V ↑.

In the case when F is algebraically closed of characteristic zero, it is
well known that two cases arise. Either V is not G-stable and V ↑ is
irreducible, or V is G-stable and V ↑ is a direct sum of p pairwise
nonisomorphic irreducible submodules. In [GK96] the structure of
V ↑ is analyzed in the case when F is an arbitrary field satisfying
char(F) 6= 0. The assumption that char(F) 6= 0 was made to ensure
that ∆ is a field. The main theorem of [GK96] states that the structure
of V ↑ is divided into five cases when V is G-stable. In this paper, we
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drop the hypothesis that char(F) 6= 0, and even more cases arise in the
stable case (Theorems 5, 8 and 9). Fortunately, all these cases can be
unified by considering the factorization of a certain binomial tp − λ in
a twisted polynomial ring ∆[t; α], which is a (left and right) principal
ideal domain.

As we will focus on the case when F need not be algebraically
closed, a crucial role will be played by the endomorphism algebra
∆ = EndFH(V ). In [GK96] the submodules of V ↑ are described up to
isomorphism. As this paper is motivated by computational applications
we will strive towards a higher standard: an explicit description of the
vectors in the submodule, and an explicit description of the matrices
in the endomorphism algebra of the submodule. This is easily achieved
in the non-stable case, which we describe for the sake of completeness.

2. The non-stable case

Let e0, e1, . . . , ed−1 be an F-basis for V and let σ : H → GL(V ) be
the representation afforded by the irreducible FH-module V relative
to this basis. The g-conjugate of σ (g ∈ G) is the representation
g 7→ (ghg−1)σ, and we say that σ is G-stable if for each g ∈ G, σ is
equivalent to its g-conjugate. In this section we shall assume that σ is
not G-stable.

Let σ↑ : G → GL(V ↑) be the representation afforded by V ↑ relative
to the basis

e0, . . . , ed−1, e0a, . . . , ed−1a, . . . , e0a
p−1, . . . , ed−1a

p−1.

Note that G/H = 〈aH〉 has order p, and we are writing eia
j rather

than ei ⊗ aj . Then

aσ↑ =









0 I 0
. . .

0 0 I
apσ 0 0









, hσ↑ =











hσ
(ah)σ

. . .

(ap−1

h)σ











where h ∈ H and ai

h = aiha−i. The elements of EndFG(V ↑) are the
matrices commuting with Gσ↑, namely the p× p block scalar matrices
diag(δ, . . . , δ) where δ ∈ ∆.

We shall henceforth assume that V is G-stable. In particular, assume
that we know α ∈ AutF(V ) satisfying

(1) (aha−1)σ = α(hσ)α−1 for all h ∈ H .

There are ‘practical’ methods for computing α. A crude method in-
volves viewing (ahia

−1)σα = α(hiσ), where H = 〈h1, . . . , hr〉, as a
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system of (d/e)2r homogeneous linear equations over ∆ in (d/e)2 un-
knowns where e = |∆ : F|. The solution space is 1-dimensional if V is
G-stable, and 0-dimensional otherwise. A more sophisticated method,
especially when char(F) 6= 0, involves using the meat-axe algorithm,
see [P84], [HR94], [IL00], and [NP95]. There is also a recursive method
for finding α which we shall not discuss here.

3. The elements of EndFG(V ↑)

In this section we explicitly describe the matrices in Γ = EndFG(V ↑)
and give an isomorphism Γ → (∆, α, λ) where (∆, α, λ) is a gen-
eral cyclic F-algebra, see [L91, 14.5]. It is worth recalling that if
char(F) 6= 0, then the endomorphism algebra ∆ is commutative. Even
in this case, though, Γ can be noncommutative.

Lemma 1. If i ∈ Z, then α−iai : V → V ai is an FH-isomorphism
between the submodules V and V ai of V ↑↓.

Proof. It follows from Eqn (1) that

vaiha−i = vαihα−i (i ∈ Z, v ∈ V )

Replacing v by vα−i gives vα−iaih = vhα−iai. Hence α−iai is an FH-
homomorphism, and since it is invertible, it is an FH-isomorphism. �

Conjugation by α induces an automorphism of ∆, which we also
call α. [Proof: Conjugating the equation hδ = δh by α and using (1)
shows that α−1δα ∈ ∆.] We abbreviate α−1δα = δα by α(δ). The
reader can determine from the context whether the symbol α refers to
an element of AutF(V ), or AutF(∆).

It follows from Eqn (1) that

(apha−p)σ = αphσα−p

for all h ∈ H . Hence α−p(apσ) centralizes H . Therefore λ := α−p(apσ)
lies in ∆×. Setting h = ap in Eqn (1) shows apσ = α(apσ)α−1. Thus

α(λ) = λα = (α−p(apσ))α = α−p(apσ) = λ.

Conjugating by αp = (apσ)λ−1 induces an inner automorphism:

αp(δ) = δαp

= δ(apσ)λ−1

= δλ−1

= λδλ−1 (δ ∈ ∆).

In summary, we have proved

Lemma 2. The element α ∈ AutFV satisfying Eqn (1) induces via
conjugation an automorphism of ∆ = EndFH(V ), also called α. There
exists λ ∈ ∆× satisfying

(2a,b,c) α−p(apσ) = λ, α(λ) = λ, αp(δ) = λδλ−1
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for all δ ∈ ∆.

Theorem 3. The representation σ↑ : G → GL(V ↑) afforded by V ↑
relative to the F-basis

e0,e1, . . . , ed−1, . . . , e0α
−iai, e1α

−iai, . . . , ed−1α
−iai,

. . . , e0α
−(p−1)ap−1, e1α

−(p−1)ap−1, . . . , ed−1α
−(p−1)ap−1(3)

for V ↑ is given by

(4a,b) aσ↑ =









0 α 0
. . .

0 0 α
αλ 0 0









, hσ↑ =









hσ
hσ

. . .
hσ









where h ∈ H. Moreover, there is an isomorphism from the general
cyclic algebra (∆, α, λ) to EndFG(V ↑)

(∆, α, λ) → EndFG(V ↑) :

p−1
∑

i=0

δix
i 7→

p−1
∑

i=0

D(δi)X
i

where

(5a,b) X =









0 I 0
. . .

0 0 I
λ 0 0









, D(δ) =









δ
α(δ)

. . .

αp−1(δ)









and δ ∈ ∆.

Proof. By Lemma 1, α−iai : V → V ai is an FH-isomorphism. Hence
hσ↑ is the p× p block scalar matrix given by Eqn (4b). Similarly, aσ↑
is given by Eqn (4a) as

(vα−iai)a = vαα−(i+1)ai+1 and (vα−(p−1)ap−1)a = vα(α−pap) = vαλ

where the last step follows from Eqn (2a).
We follow [J96] and write R = ∆[t; α] for the twisted polynomial ring

with the usual addition, and multiplication determined by tδ = α(δ)t
for δ ∈ ∆. The right ideal (tp − λ)R is two-sided as

t(tp − λ) = (tp − λ)t and δ(tp − λ) = (tp − λ)λ−1δλ

by virtue of Eqns (2b) and (2c). The general cyclic algebra (∆, α, λ)
is defined to be the quotient ring R/(tp − λ)R. Since R is a (left)
euclidean domain, the elements of (∆, α, λ) may be written uniquely
as
∑p−1

i=0 δix
i where x = t+(tp −λ)R, and multiplication is determined

by the rules xp = λ and xδ = α(δ)x where δ ∈ ∆.
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The matrices commuting with Hσ↑ are precisely the block matrices
(δi,j)0≤i,j<p where δi,j ∈ ∆. To compute EndFG(V ↑), we determine the
matrices (δi,j) that commute with aσ↑. If 0 < i < p−1, then comparing
row i−1 of both sides of (aσ↑)(δi,j) = (δi,j)(aσ↑) shows how to express
δi,j in terms of the δi−1,k. Similarly, row p − 1 shows how to express
δp−1,j in terms of δ0,k. It follows that a matrix (δi,j) commuting with
aσ↑ is completely determined once we know the 0th row δ0,j. We show

that the 0th row can be arbitrary. The 0th row of
∑p−1

i=0 D(δi)X
i is

(δ0, δ1, . . . , δp−1). This element lies in Γ as we show that D(δi), X ∈ Γ.
To see that D(δ) ∈ Γ, we show that (aσ↑)D(δ) = D(δ)(aσ↑). The

first product equals

(aσ↑)D(δ) =









0 δα 0
. . .

0 0 α−(p−2)δαp−1

αλδ 0 0









and the second product is identical if αλδ = δαp−1

αλ. However, this
is true by Eqn (2c). To see that X ∈ Γ, write aσ↑ = AX where
A = diag(α, . . . , α). It follows from Eqn (2b) that A and X commute.
Therefore aσ↑ = AX and X commute.

In summary, elements of Γ may be written uniquely as
∑p−1

i=0 D(δi)X
i

where δi ∈ ∆. Since Xp = λI and XD(δ) = D(α(δ))X it follows that

the map
∑p−1

i=0 δix
i 7→

∑p−1
i=0 D(δi)X

i is an isomorphism (∆, α, λ) → Γ
as claimed. �

A consequence of Eqn (2c) is that α has order p or 1 modulo the
inner automorphisms of ∆. It follows from the Skolem-Noether theo-
rem [CR90,3.62] that the order of α modulo inner automorphisms is
precisely the order of the restriction α|Z, where Z = Z(∆) is the centre
of ∆.

4. The case when α|Z has order p

In this section we determine the structure of Γ := EndFG(V ↑) in the
case when α induces an automorphism of order p on the field Z(∆).

Of primary interest to us is Part (a) of the following classical theo-
rem. Although this result can be deduced from [J96, Theorem 1.1.22]
and the fact that tp − λ is a ‘two-sided maximal’ element of ∆[t; α],
we prefer to give an elementary proof which generalizes [L91, Theo-
rem 14.6].

Theorem 4. Let Γ be the general cyclic algebra (∆, α, λ) where λ 6= 0
and α(λ) = λ. Suppose that α|Z(∆) has order p, and fixed subfield Z0.
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Then
(a) Γ is a simple Z0-algebra,
(b) CΓ(∆) = Z(∆),
(c) Z(Γ) = Z0, and
(d) |Γ : Z0| = (pDeg(∆))2 where |∆ : Z(∆)| = Deg(∆)2.

Proof. The following proof does not assume that p is prime. Let
γ = γ1x

i1 + · · · + γrx
ir be a nonzero element of an ideal I of Γ, where

0 ≤ i1 < · · · < ir < p, γi ∈ ∆, and r is chosen minimal. By minimality,
each γi is nonzero. To prove Part (a) it suffices to prove that r = 1.
Then I = Γ as γ1x

i1 ∈ I is a unit because γ1 and x are both units.
Assume now that r > 1. Then

(γ1α
i1(δ)γ−1

1 )γ − γδ =

r
∑

k=2

(

γ1α
i1(δ)γ−1

1 γk − γkα
ik(δ)

)

xik

lies in I for each δ ∈ ∆. By the minimality of r, each coefficient of xik

is zero. This implies that αi1 equals αik modulo inner automorphisms
for k = 2, . . . , r. This contradiction proves Part (a).

The proofs of Parts (b) and (c) are straightforward, so we shall omit
their proofs. Part (d) follows from |Γ : ∆| = |Z(∆) : Z0| = p, and
|∆ : Z(∆)| = Deg(∆)2 is a square. �

Before proceeding to Theorem 5, we define the left- and right-twisted
powers, µ=i and µi<, where µ ∈ ∆ and i ∈ Z. These expressions are like
norms, indeed Jacobson [J96] uses the notation Ni(µ) to suggest this.
These “norms”, however, are not multiplicative in general. Consider
the twisted polynomial ring ∆[t; α] and define

(µt)i = µ=iti, and (tµ)i = tiµi<

for µ ∈ ∆ and i ∈ Z. It follows from the power laws (µt)i(µt)j = (µt)i+j

and ((µt)i)j = (µt)ij that

µ=iαi(µ=j) = µ=(i+j), and µ=iαi(µ=i) · · ·αi(j−1)(µ=i) = µ=(ij)

for i, j ∈ Z. Similar laws hold for right-twisted powers. The left-twisted
powers of nonnegative integers can be defined by the recurrence relation

(6) µ=0 = 1, and µ=(i+1) = µ=iαi(µ) = µα(µ=i) for i ≥ 0,

and negative powers can be defined by µ=−i = αi(µ=i)−1.
It is important in the sequel whether or not λ−1 has a left-twisted

pth root.

Theorem 5. Let V be a G-stable irreducible FH-module where H ⊳ G
and |G/H| = p is prime. Let α and λ be as in Lemma 2. Suppose that
α|Z has order p where Z = Z(∆) and ∆ = EndFG(V ).
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(a) If the equation µ=p = λ−1 has no solution for µ ∈ ∆×, then V ↑ is
irreducible, and EndFG(V ↑) is isomorphic to the general cyclic algebra
(∆, α, λ) as per Theorem 3.
(b) If µ ∈ ∆× satisfies µ=p = λ−1, then V ↑ = U(µ0) ∔ · · · ∔ U(µp−1)
where

U(µj) = V

p−1
∑

i=0

µ=i
j α−iai (j = 0, 1, . . . , p − 1)

are isomorphic irreducible submodules satisfying U(µj)↓ ∼= V , and
where µ=p

j = λ−1. Moreover, if ρ : G → GL(U(µ)) is the representation
afforded by U(µ) relative to the basis e′0, . . . , e

′
p−1 where

e′j = ej

p−1
∑

i=0

µ=iα−iai (j = 0, 1, . . . , d − 1),

then aρ = αµ−1, hρ = hσ for h ∈ H, and

EndFG(U(µ)) = C∆(αµ−1) = {δ ∈ ∆ | δα = δµ}.

Proof. By Theorem 4(a), (∆, α, λ) is a simple ring. In Part(a) more
is true: (∆, α, λ) is a division ring by [J96, Theorem 1.3.16]. By
Theorem 3, (∆, α, λ) is isomorphic to EndFG(V ↑) and so we have proved
that V ↑ is irreducible as desired.

Consider Part (b). Let s = µt be an element of the twisted polyno-
mial ring ∆[t; α], then si = (µt)i = µ=iti and

sδ = µtδ = (µα(δ)µ−1)µt = µα(δ)µ−1s.

Therefore the map ∆[t; α] → ∆[s; αµ−1] :
∑p−1

i=0 δit
i 7→

∑p−1
i=0 δi(µ

=i)−1si

is an isomorphism. We are abusing notation here by identifying αµ−1

in AutF(V ) with δ 7→ δαµ−1

in AutF(∆). If y = µx, then

yp = (µx)p = µ=pλ = λ−1λ = 1.

By taking quotients we get an isomorphism (∆, α, λ) → (∆, αµ−1, 1)
given by

p−1
∑

i=0

δix
i 7→

p−1
∑

i=0

δi(µ
=i)−1yi

where x = t + (tp − λ) and y = s + (sp − 1).
As yp − 1 = (y − 1)(yp−1 + · · · + y + 1), and ∆[s, αµ−1] is right

euclidean it follows that (y − 1)(∆, αµ−1, 1) is a maximal right ideal of
(∆, αµ−1, 1). Now y − 1 corresponds to µx − 1 which corresponds to
D(µ)X − 1 whose kernel gives rise to the irreducible submodule U(µ)
of V ↑ in the statement of Part(b). We shall reprove this, and prove a
little more, using a more elementary argument.
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Let U be a submodule of V ↑ satisfying U↓ ∼= V . Let φ : V → V ↑
be an FH-homomorphism such that V φ = U↓. Let πi : V ↑ → V ai

be the FH-epimorphism given by (
∑p−1

i=0 viα
−iai)πi = viα

−iai. Then
δi = φπia

−iαi is an FH-homomorphism V → V , or an element of ∆.
Since π0 + π1 + · · · + πp−1 is the identity map 1: V ↑ → V ↑, it follows
that

φ = φ1 = φ(π0 + π1 + · · · + πp−1) =

p−1
∑

i=0

δiα
−iai.

We now view φ as a map V → U and note that U = Ua. Then
α−1a : V → V a, a−1φa : V a → Ua and φ−1 : Ua → V are each FH-
isomorphisms. Hence their composite, (α−1a)(a−1φa)φ−1 is an iso-
morphism V → V , denoted µ−1 where µ ∈ ∆×. Rearranging gives
φa = αµ−1φ. Therefore,

(vφ)a =

(

v

p−1
∑

i=0

δiα
−iai

)

a = vαµ−1

p−1
∑

i=0

δiα
−iai

for all v ∈ V . The expression (vδiα
−iai)a equals

vδiαα−(i+1)ai+1 = vαδα
i α−(i+1)ai+1 = vαµ−1δi+1α

−(i+1)ai+1.

Setting i = p − 1 gives

(vδp−1α
−(p−1)ap−1)a = vαδα

p−1α
−pap = vαδα

p−1λ = vαµ−1δ0.

Therefore δα
i = µ−1δi+1 for i = 0, . . . , p − 2 and δα

p−1λ = µ−1δ0. If
δ0 = 0, then each δi = 0 and φ = 0, a contradiction. Thus δ0 6= 0 and
as V δ−1

0 φ = U , we may assume that δ0 = 1. It follows from Eqn (6)
that δi = µ=i is the solution to the recurrence relation: δ0 = 1 and
µδα

i = δi+1 for i ≥ 0. Furthermore µδα
p−1 = λ−1 implies that µ=p = λ−1.

In summary, any submodule U of V ↑ satisfying U↓ ∼= V equals U(µ)
for some µ satisfying µ=p = λ−1. Furthermore, by retracing the above
argument, if µ=p = λ−1, then U(µ) is an irreducible submodule of V ↑
satisfying U↓ ∼= V .

As EndFG(V ↑) is a simple ring, V ↑ is a direct sum of isomorphic
simple submodules. Therefore, V ↑ = U(µ0)∔ · · ·∔U(µp−1) as desired.
It follows from Lemma 1 that the representation ρ : G → GL(V )
satisfies aρ = αµ−1 and hρ = hσ for h ∈ H . Consequently, the matrices
commuting with Gρ equal the elements of ∆ centralizing aρ. Hence
EndFG(U(µ)) = C∆(αµ−1) as claimed. �

5. The case when α is inner

In this section assume that α|Z(∆) has order 1, or equivalently by the
Skolem-Noether theorem, that α is inner. Fix ε ∈ ∆× such that α is the
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inner automorphism α(δ) = ε−1δε. Clearly α(ε) = ε and by Eqn (2c)
ε−pδεp = αp(δ) = λδλ−1. Therefore, η = εpλ ∈ Z(∆). If y = εx, then
yp = ε=pxp = εpλ = η and yδ = εxδ = εδεx = δεx = δy. Hence

(8) (∆, α, λ) → (∆, 1, η) :

p−1
∑

i=0

δix
i 7→

p−1
∑

i=0

δiε
−iyi

is an isomorphism. Thus we may untwist EndFG(V ↑).

Theorem 6. Let V be a G-stable irreducible FH-module where H ⊳ G
and |G/H| = p is prime. Suppose that α induces the inner auto-
morphism α(δ) = δε of the division algebra ∆ = EndFH(V ). Then
η = εpλ ∈ Z× where Z = Z(∆). Suppose that sp − η = ν(s)µ(s)
where µ(s) =

∑m
i=0 µis

i and ν(s) =
∑p−m

i=0 νis
i, are monic polynomials

in ∆[s]. Then Wµ =
∑m−1

i=0 V
∑p−m

j=0 νjε
i+jα−(i+j)ai+j is a submodule of

V ↑. Let ρ : G → GL(Wµ) be the representation afforded by Wµ relative
to the basis

(9) e′0, . . . , e
′
d−1, . . . , e

′
j(εX)k, . . . , e′0(εX)m−1, . . . , e′d−1(εX)m−1

where

e′k = ek

p−m
∑

j=0

νjε
jα−jaj = ek

p−m
∑

j=0

νj(εX)j,

and X is given by Eqn (5a). Then

(10) aρ = αε−1









0 1 0
. . .

0 0 1
−µ0 −µ1 −µm−1









,

and hρ = diag(hσ, . . . , hσ) where h ∈ H. Moreover,

EndFG(Wµ) =

{

m−1
∑

i=0

δi(aρ)i | δi ∈ ∆

}

.

If µ(s) ∈ Z[s], then EndFG(Wµ) ∼= ∆[s]/µ(s)∆[s] ∼= ∆ ⊗Z K where
K = Z[s]/µ(s)Z[s].

Proof. Arguing as in Theorem 5, we have a series of right ideals:

ν(s)∆[s] ⊆ ∆[s], ν(y)(∆, 1, η) ⊆ (∆, 1, η), ν(εx)(∆, α, λ) ⊆ (∆, α, λ),

and
∑n

i=0 D(νi)(εX)iΓ is a right ideal of Γ = EndFG(V ↑). This right
ideal corresponds to the submodule V ↑

∑n
i=0 D(νi)(εX)iΓ of V ↑. It

follows from Eqn (5a) and (εX)p−η = 0 that the minimum polynomial
of εX equals sp − η.
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Let v′ = vν(εX) where v ∈ V . Then

(11) v′µ(εX) = vν(εX)µ(εX) = v((εX)p − η) = v 0 = 0.

This proves that (9) is a basis for

Wµ = im ν(εX) = ker ν(εX) =
m−1
∑

i=0

V
n
∑

j=0

νjε
i+jα−(i+j)ai+j

It follows from Lemma 1 that hρ = diag(hσ, . . . , hσ) is a block scalar
matrix (h ∈ H). Since a = αX,

(12) v′(εX)ia = v′(εX)iαX = v′αε−1(εX)i+1.

It follows from Eqns (11) and (12) that the matrix for aρ is correct.
It is now a simple matter to show that

{
∑m−1

i=0 δi(aρ)i | δi ∈ ∆
}

is
contained in EndFG(Wµ). A familiar calculation shows that an element
of EndFG(Wµ) is determined by the entries in its top row. As this may
be arbitrary, we have found all the elements of EndFG(Wµ). �

It follows from Theorem 6 that a necessary condition for Wµ to be
irreducible is that µ(s) is irreducible in ∆[s]. Lemma 7 describes an
important case when EndFG(Wµ) is a division ring, and hence Wµ is
irreducible. The following proof follows Prof. Deitmar’s suggestion
[D02].

Lemma 7. Let ∆ be a division algebra with center F, and let µ(s) ∈ F[s]
be irreducible of prime degree. Suppose that no δ ∈ ∆ satisfies µ(δ) = 0.
Then the quotient ring ∆[s]/µ(s)∆[s] is a division algebra.

Proof. Let K = F[s]/µ(s)F[s]. Then K is a field and |K : F| = deg µ(s)
is prime. Clearly µ(s)∆[s] is a two-sided ideal of ∆[s], and ∆[s]/µ(s)∆[s]
is isomorphic to ∆K = ∆⊗FK. By [L91, 15.1(3)], ∆K is a central simple
K-algebra, and hence is isomorphic to Mn(D) for some division algebra
D over F. The degree of D and the Schur index of ∆K are defined as
follows

Deg(D) = (dimF D)1/2 and Ind(∆K) = Deg(D).

By [P82, Prop. 13.4], Ind(∆K) divides Ind(∆), and Ind(∆) divides
|K : F| Ind(∆K). Thus either

Ind(∆K) = Ind(∆) = Deg(∆) = Deg(DK)

and ∆K is a division algebra by [P82, Prop. 13.4(ii)], or Ind(∆) equals
|K : F| Ind(∆K). If the second case occurred, then by [P82, Cor. 13.4],
K is isomorphic to a subfield of ∆, and so µ(s) has a root in ∆, contrary
to our hypothesis. �
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If η 6∈ ∆p, then η 6∈ Zp and so sp − η is irreducible in Z[s], and
it follows from Lemma 7 that V ↑ = Wsp−η is irreducible. Note that
EndFG(V ↑) ∼= ∆ ⊗ Z[η1/p] is a division algebra.

6. The case when α is inner and ξp = η

In this section we shall assume that ξ ∈ ∆× satisfies ξp − η = 0. Let
y = εx and z = ξ−1y = ξ−1εx. It is useful to consider the isomorphisms
(∆, α, λ) → (∆, 1, η) → (∆, 1, 1) defined by x 7→ ε−1y and y 7→ ξz.
Note y and z are central in (∆, 1, η) and (∆, 1, 1) respectively, and
yp = η and zp = 1.

Theorem 8. Let V be a G-stable irreducible FH-module where H ⊳ G
and |G/H| = p is prime. Suppose that α induces the inner automor-
phism α(δ) = δε of the division algebra ∆ = EndFH(V ). Set η = εpλ
and let ξ, ω ∈ ∆ satisfy ξp = η and ωp = 1. Then ξ ∈ Z = Z(∆).
(a) If char(F) 6= p and ω 6= 1, then V ↑ is an internal direct sum

V ↑ = U(ξ) ∔ U(ξω) ∔ · · · ∔ U(ξωp−1)

where

U(ξωj) = V

p−1
∑

i=0

(ξωj)−iεiα−iai

is irreducible, and U(ξω) ∼= U(ξω′) if and only if ω and ω′ are con-
jugate in ∆. If µ(s) is an irreducible factor of sp − η in Z[s], then
Wµ defined in Theorem 6 is a Wedderburn component of V ↑, and
Wµ = U(θ1) ∔ · · · ∔ U(θn) where θ1, . . . , θn are the roots of µ(s) in
the field Z(ξ, ω). In addition, the representation ρθ : G → GL(U(θ))
afforded by U(θ) relative to the basis e′0, . . . , e

′
d−1 where

e′j = ej

p−1
∑

i=0

θ−iεiα−iai

satisfies

(12a,b) aρθ = αε−1θ and hρθ = hσ

for h ∈ H, and EndFG(U(θ)) = C∆(θ).
(b) If char(F) = p, then ω = 1 and V ↑ is uniserial with unique
composition series {0} = W0 ⊂ W1 ⊂ · · · ⊂ Wp = V ↑ where

Wk =
k
∑

i=1

V

p−i
∑

j=0

(

i + j − 1

j

)

ξ−jεjα−jaj .

Moreover, Wk−1/Wk
∼= U(ξ) for k = 1, . . . , p and EndFG(U(ξ)) = ∆.
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Proof. Since zδ = δz, we see that (ξ−1εx)δ = δ(ξ−1εx). This implies
that ξ−1δ = δξ−1 and so ξ ∈ Z.
Case (a): Now (ξω)p = ξpωp = η, hence

(13) yp − η = yp − (ξω)p = (y − ξω)

(

p−1
∑

i=0

(ξω)p−1−iyi

)

.

Therefore V ↑
∑p−1

i=0 (ξω)p−1−i(εX)iΓ is a submodule of V ↑ where X is
given by Eqn (5a). We show directly that U(ξω) is a submodule of V ↑.
This follows from

(v(ξω)−iεiα−iai)a = vα(α−1(ξω)−iεiα)α−(i+1)ai+1

= vαε−1ξω(ξω)−(i+1)εi+1α−(i+1)ai+1(14)

and setting i = p − 1 in the right-hand side of Eqn (14) gives

vαε−1ξω(ξω)−pεpα−pap = vαε−1ξωη−1εpλ = vαε−1ξω.

As U(ξω)↓ ∼= V , we see that U(ξω) is an irreducible FG-submodule of
V ↑. Setting θ = ξω establishes the truth of Eqns (12a,b).

We may calculate Hom(U(ξω), U(ξω′)) directly by finding all δ in
EndF(V ) that intertwine ρξω and ρξω′. As δ intertwines hρξω and hρξω′ ,
it follows that δ commutes with Hσ, and hence δ ∈ ∆. Also

δ(αε−1ξω) = (αε−1ξω′)δ

so δαε−1

ξω = ξω′δ. Since ξ ∈ Z× and δαε−1

= δ, this amounts to
δω = ω′δ. Setting i = j shows that EndFG(U(ξω)) = C∆(ω).

The Galois group Gal(Z(ω) : Z) is cyclic of order dividing p−1. Also
ω and ω′ are conjugate in Gal(Z(ω) : Z) if and only if they share the
same minimal polynomial over Z. The latter holds by Dixon’s Theorem
[L91, 16.8] if and only if ω and ω′ are conjugate in ∆. Note that ω
and ω′ share the same minimal polynomial over Z precisely when ξω
and ξω′ share the same minimal polynomial. This proves that Wµ is a
Wedderburn component of V ↑.

Case (b): Suppose now that char(F) = p. Then ω = 1 and Eqn (13)

becomes yp − η = (y − ξ)p = (y − ξ)(
∑p−1

i=0

(

p−1
i

)

(−ξ)p−1−iyi). As

Γ = EndFG(V ↑) ∼= (∆, α, λ) ∼= (∆, 1, η) ∼= (∆, 1, 1) ∼= ∆[z]/(z−1)p∆[z]

has a unique composition series, so too does V ↑. By noting that
z = ξ−1εx and D(ξ−1ε) = ξ−1ε, we see that Wi = V ↑(ξ−1εX − 1)p−iΓ
defines the unique composition series for V ↑ where X is given by
Eqn (5a).

Let R be the diagonal matrix diag(1, ξ−1ε, . . . , (ξ−1ε)p−1), and let S
be the matrix whose (i, j)th block is the binomial coefficient

(

i
j

)

where
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0 ≤ i, j < p. A direct calculation verifies that R(ξ−1εX)R−1 = C and
S−1CS = J where

C =









0 1 0
. . .

0 0 1
1 0 0









and J =









1 1
. . .

1 1
1









.

Therefore ξ−1εX − 1 = T−1(J − 1)T where T = S−1R, and hence

Wk = V ↑(ξ−1εX − 1)p−k = V ↑ T−1(J − 1)p−kT = V ↑(J − 1)p−kT.

It is easily seen that im(J − 1)p−k = ker(J − 1)k is the subspace
(0, . . . , 0, V, . . . , V ) where the first V is in column p − k. The (i, j)th
entry of T = S−1R is (−1)i+j

(

i
j

)

(ξ−1ε)j. The last row of T gives

W1 = V

p−1
∑

j=0

(−1)p−1+j

(

p − 1

j

)

(ξ−1ε)jα−jaj .

More generally, the last k rows of T give

Wk =
k
∑

i=1

V

p−i
∑

j=0

(−1)p−i+j

(

p − i

j

)

(ξ−1ε)jα−jaj .

Since p − i − ℓ = −(i + ℓ) in a field (such as F) of characteristic p, we
see that

(

p−i
j

)

= (−1)j
(

i+j−1
j

)

and the formula for Wk simplifies to

Wk =

k
∑

i=1

V

p−i
∑

j=0

(

i + j − 1

j

)

ξ−jεjα−jaj .

Setting k = 1 shows W1 = U(ξ). A direct calculation shows that
Wi−1/Wi

∼= U(ξ). We showed in Part (a) that EndFG(U(ξ)) equals
C∆(ξ) = ∆. �

In Case (a), C∆(ξω) equals ∆ precisely when ω ∈ Z. If ∆ is the
rational quaternions, and ω is a primitive cube root of unity, then
C∆(ω) equals Q(ω). There are infinitely many primitive cube roots of 1
in this case, and they form a conjugacy class of ∆ by Dixon’s Theorem
(as they all satisfy the irreducible polynomial s2 + s + 1 over Q). Thus
isomorphism of the submodules U(ξω) is governed by conjugacy in ∆,
and not conjugacy in Gal(Q(ω) : Q).

Finally, it remains to generalize Theorem 8(a) to allow for the pos-
sibility that ∆ may not contain a primitive pth root of 1.

Theorem 9. Let V be a G-stable irreducible FH-module where H ⊳ G
and |G/H| = p is prime. Suppose that ε, ξ ∈ ∆ satisfy α(δ) = δε
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(δ ∈ ∆) and ξp − η = 0 where η = εpλ ∈ Z = Z(∆). In addition,
suppose that char(F) 6= p. Then V ↑ is an internal direct sum

V ↑ = Wµ1
∔ · · · ∔ Wµr

where sp − η = µ1(s) · · ·µr(s) is a factorization into monic irreducibles
over Z, and where Wµ defined in Theorem 6. If µ(s) is a monic
irreducible factor of sp − η, and µ(s) = ν1(s) · · ·νn(s) where the νi(s)
are monic and irreducible in ∆[s], then Wµ is a Wedderburn component
of V ↑, and Wµ

∼= W⊕n
νn

where Wνn
is an irreducible FG-module and

EndFG(Wνn
) is given in Theorem 6. In addition,

EndFG(Wνn
) ∼= B/νn(s)∆[s]

where B = {δ(s) ∈ ∆[s] | δ(s)νn(s) ∈ νn(s)∆[s]} is the idealizer of the
right ideal νn(s)∆[s].

Proof. Since char(F) 6= p, the monic polynomials µ1(s), . . . , µr(s) are
distinct and pairwise coprime in Z[s]. From this it follows that V ↑
equals Wµ1

∔ · · · ∔ Wµr
. By Theorem 6, EndFG(Wµ) ∼= ∆K where

∆K
∼= ∆[s]/µ(s)∆[s] ∼= ∆ ⊗Z K, and K is the field Z[s]/µ(s)Z[s].

By [L91, 15.1(3)], ∆K is a simple ring. Therefore µ(s)∆[s] is a two-
sided maximal ideal of ∆[s], and so µ(s) is called a two-sided maximal
element of ∆[s]. By [J96, Theorem 1.2.19(b)], ∆K

∼= Mn(D) where D
is the division ring B/νn(s)∆[s]. Moreover, Z(∆K) ∼= Z(Mn(D)) so
K ∼= Z(D). Thus Wµ

∼= W⊕n
νn

where Wνn
is an irreducible submodule

of V ↑ and EndFG(Wνn
) ∼= D. In addition, ν1, . . . , νn are similar [J96,

Def. 1.2.7], and Wν1
, . . . , Wνn

are isomorphic.
If µ(s), µ′(s) are distinct monic irreducible factors of sp − η in Z[s]

and ν(s), ν ′(s) in ∆[s] are monic irreducible factors of µ(s) and µ′(s)
respectively, then it follows from [J96, Def. 1.2.7] that ν(s) and ν ′(s)
are not similar. This means that an irreducible summand of Wµ is
not isomorphic to an irreducible summand of Wµ′ . Hence the Wµ are
Wedderburn components as claimed. �
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