Modules induced from a normal subgroup of prime index

S. P. GLASBY

Abstract

Let G be a finite group and H a normal subgroup of prime index p. Let V be an irreducible $\mathbb{F} H$-module and U a quotient of the induced $\mathbb{F} G$-module $V \uparrow$. We describe the structure of U, which is semisimple when $\operatorname{char}(\mathbb{F}) \neq p$ and uniserial if $\operatorname{char}(\mathbb{F})=p$. Furthermore, we describe the division rings arising as endomorphism algebras of the simple components of U. We use techniques from noncommutative ring theory to study $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ and relate the right ideal structure of $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ to the submodule structure of $V \uparrow$.

2000 Mathematics subject classification: 20C40, 16S35

1. Introduction

Throughout this paper G will denote a finite group and H will denote a normal subgroup of prime index p. Furthermore, V will denote an irreducible (right) $\mathbb{F} H$-module, and $V \uparrow=V \otimes_{\mathbb{F} H} \mathbb{F} G$ is the associated induced $\mathbb{F} G$-module. Let a be an element of G not in H, and let $\Delta:=\operatorname{End}_{\mathbb{F} H}(V)$ and $\Gamma:=\operatorname{End}_{\mathbb{F} G}(V \uparrow)$.

This paper is motivated by the following problem: "Given an irreducible $\mathbb{F} H$-module V, where \mathbb{F} is an arbitrary field, and a quotient U of $V \uparrow$, determine the submodule structure of U and the endomorphism algebras of the simple modules." By Schur's lemma, Δ is a division algebra over \mathbb{F}, so we shall need techniques from noncommutative ring theory.

We determine the submodule structure of U by explicitly realizing $\operatorname{End}_{\mathbb{F} G}(U)$ as a direct sum of minimal right ideals, or as a local ring. It suffices to solve our problem in the case when $U=V \uparrow$. Henceforth $U=V \uparrow$.

In the case when \mathbb{F} is algebraically closed of characteristic zero, it is well known that two cases arise. Either V is not G-stable and $V \uparrow$ is irreducible, or V is G-stable and $V \uparrow$ is a direct sum of p pairwise nonisomorphic irreducible submodules. In [GK96] the structure of $V \uparrow$ is analyzed in the case when \mathbb{F} is an arbitrary field satisfying $\operatorname{char}(\mathbb{F}) \neq 0$. The assumption that $\operatorname{char}(\mathbb{F}) \neq 0$ was made to ensure that Δ is a field. The main theorem of [GK96] states that the structure of $V \uparrow$ is divided into five cases when V is G-stable. In this paper, we
drop the hypothesis that $\operatorname{char}(\mathbb{F}) \neq 0$, and even more cases arise in the stable case (Theorems 5, 8 and 9). Fortunately, all these cases can be unified by considering the factorization of a certain binomial $t^{p}-\lambda$ in a twisted polynomial ring $\Delta[t ; \alpha]$, which is a (left and right) principal ideal domain.

As we will focus on the case when \mathbb{F} need not be algebraically closed, a crucial role will be played by the endomorphism algebra $\Delta=\operatorname{End}_{F H}(V)$. In [GK96] the submodules of $V \uparrow$ are described up to isomorphism. As this paper is motivated by computational applications we will strive towards a higher standard: an explicit description of the vectors in the submodule, and an explicit description of the matrices in the endomorphism algebra of the submodule. This is easily achieved in the non-stable case, which we describe for the sake of completeness.

2. The non-stable case

Let $e_{0}, e_{1}, \ldots, e_{d-1}$ be an \mathbb{F}-basis for V and let $\sigma: H \rightarrow \operatorname{GL}(V)$ be the representation afforded by the irreducible $\mathbb{F} H$-module V relative to this basis. The g-conjugate of $\sigma(g \in G)$ is the representation $g \mapsto\left(g h g^{-1}\right) \sigma$, and we say that σ is G-stable if for each $g \in G, \sigma$ is equivalent to its g-conjugate. In this section we shall assume that σ is not G-stable.

Let $\sigma \uparrow: G \rightarrow \mathrm{GL}(V \uparrow)$ be the representation afforded by $V \uparrow$ relative to the basis

$$
e_{0}, \ldots, e_{d-1}, e_{0} a, \ldots, e_{d-1} a, \ldots, e_{0} a^{p-1}, \ldots, e_{d-1} a^{p-1}
$$

Note that $G / H=\langle a H\rangle$ has order p, and we are writing $e_{i} a^{j}$ rather than $e_{i} \otimes a^{j}$. Then

$$
a \sigma \uparrow=\left(\begin{array}{cccc}
0 & I & & 0 \\
& & \ddots & \\
0 & 0 & & I \\
a^{p} \sigma & 0 & & 0
\end{array}\right), \quad h \sigma \uparrow=\left(\begin{array}{cccc}
h \sigma & & & \\
& \left({ }^{a} h\right) \sigma & & \\
& & \ddots & \\
& & & \left(a^{p-1} h\right) \sigma
\end{array}\right)
$$

where $h \in H$ and ${ }^{a^{i}} h=a^{i} h a^{-i}$. The elements of $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ are the matrices commuting with $G \sigma \uparrow$, namely the $p \times p$ block scalar matrices $\operatorname{diag}(\delta, \ldots, \delta)$ where $\delta \in \Delta$.

We shall henceforth assume that V is G-stable. In particular, assume that we know $\alpha \in \operatorname{Aut}_{\mathbb{F}}(V)$ satisfying

$$
\begin{equation*}
\left(a h a^{-1}\right) \sigma=\alpha(h \sigma) \alpha^{-1} \quad \text { for all } h \in H . \tag{1}
\end{equation*}
$$

There are 'practical' methods for computing α. A crude method involves viewing $\left(a h_{i} a^{-1}\right) \sigma \alpha=\alpha\left(h_{i} \sigma\right)$, where $H=\left\langle h_{1}, \ldots, h_{r}\right\rangle$, as a
system of $(d / e)^{2} r$ homogeneous linear equations over Δ in $(d / e)^{2}$ unknowns where $e=|\Delta: \mathbb{F}|$. The solution space is 1-dimensional if V is G-stable, and 0 -dimensional otherwise. A more sophisticated method, especially when $\operatorname{char}(\mathbb{F}) \neq 0$, involves using the meat-axe algorithm, see [P84], [HR94], [IL00], and [NP95]. There is also a recursive method for finding α which we shall not discuss here.

3. The elements of $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$

In this section we explicitly describe the matrices in $\Gamma=\operatorname{End}_{F G}(V \uparrow)$ and give an isomorphism $\Gamma \rightarrow(\Delta, \alpha, \lambda)$ where $(\Delta, \alpha, \lambda)$ is a general cyclic \mathbb{F}-algebra, see [L91, 14.5]. It is worth recalling that if $\operatorname{char}(\mathbb{F}) \neq 0$, then the endomorphism algebra Δ is commutative. Even in this case, though, Γ can be noncommutative.

Lemma 1. If $i \in \mathbb{Z}$, then $\alpha^{-i} a^{i}: V \rightarrow V a^{i}$ is an $\mathbb{F} H$-isomorphism between the submodules V and $V a^{i}$ of $V \uparrow \downarrow$.

Proof. It follows from Eqn (1) that

$$
v a^{i} h a^{-i}=v \alpha^{i} h \alpha^{-i} \quad(i \in \mathbb{Z}, v \in V)
$$

Replacing v by $v \alpha^{-i}$ gives $v \alpha^{-i} a^{i} h=v h \alpha^{-i} a^{i}$. Hence $\alpha^{-i} a^{i}$ is an $\mathbb{F} H_{-}$ homomorphism, and since it is invertible, it is an $\mathbb{F} H$-isomorphism.

Conjugation by α induces an automorphism of Δ, which we also call α. [Proof: Conjugating the equation $h \delta=\delta h$ by α and using (1) shows that $\alpha^{-1} \delta \alpha \in \Delta$.] We abbreviate $\alpha^{-1} \delta \alpha=\delta^{\alpha}$ by $\alpha(\delta)$. The reader can determine from the context whether the symbol α refers to an element of $\operatorname{Aut}_{\mathbb{F}}(V)$, or $\operatorname{Aut}_{\mathbb{F}}(\Delta)$.

It follows from Eqn (1) that

$$
\left(a^{p} h a^{-p}\right) \sigma=\alpha^{p} h \sigma \alpha^{-p}
$$

for all $h \in H$. Hence $\alpha^{-p}\left(a^{p} \sigma\right)$ centralizes H. Therefore $\lambda:=\alpha^{-p}\left(a^{p} \sigma\right)$ lies in Δ^{\times}. Setting $h=a^{p}$ in Eqn (1) shows $a^{p} \sigma=\alpha\left(a^{p} \sigma\right) \alpha^{-1}$. Thus

$$
\alpha(\lambda)=\lambda^{\alpha}=\left(\alpha^{-p}\left(a^{p} \sigma\right)\right)^{\alpha}=\alpha^{-p}\left(a^{p} \sigma\right)=\lambda .
$$

Conjugating by $\alpha^{p}=\left(a^{p} \sigma\right) \lambda^{-1}$ induces an inner automorphism:

$$
\alpha^{p}(\delta)=\delta^{\alpha^{p}}=\delta^{\left(a^{p} \sigma\right) \lambda^{-1}}=\delta^{\lambda^{-1}}=\lambda \delta \lambda^{-1} \quad(\delta \in \Delta) .
$$

In summary, we have proved
Lemma 2. The element $\alpha \in$ Aut $_{\mathbb{F}} V$ satisfying Eqn (1) induces via conjugation an automorphism of $\Delta=\operatorname{End}_{\mathbb{F} H}(V)$, also called α. There exists $\lambda \in \Delta^{\times}$satisfying
(2a,b,c)

$$
\alpha^{-p}\left(a^{p} \sigma\right)=\lambda, \quad \alpha(\lambda)=\lambda, \quad \alpha^{p}(\delta)=\lambda \delta \lambda^{-1}
$$

for all $\delta \in \Delta$.
Theorem 3. The representation $\sigma \uparrow: G \rightarrow \mathrm{GL}(V \uparrow)$ afforded by $V \uparrow$ relative to the \mathbb{F}-basis

$$
\begin{align*}
& e_{0}, e_{1}, \ldots, e_{d-1}, \ldots, e_{0} \alpha^{-i} a^{i}, e_{1} \alpha^{-i} a^{i}, \ldots, e_{d-1} \alpha^{-i} a^{i}, \\
& \quad \ldots, e_{0} \alpha^{-(p-1)} a^{p-1}, e_{1} \alpha^{-(p-1)} a^{p-1}, \ldots, e_{d-1} \alpha^{-(p-1)} a^{p-1} \tag{3}
\end{align*}
$$

for $V \uparrow$ is given by
$(4 \mathrm{a}, \mathrm{b}) \quad a \sigma \uparrow=\left(\begin{array}{cccc}0 & \alpha & & 0 \\ & & \ddots & \\ 0 & 0 & & \alpha \\ \alpha \lambda & 0 & & 0\end{array}\right), \quad h \sigma \uparrow=\left(\begin{array}{cccc}h \sigma & & & \\ & h \sigma & & \\ & & \ddots & \\ & & & h \sigma\end{array}\right)$
where $h \in H$. Moreover, there is an isomorphism from the general cyclic algebra $(\Delta, \alpha, \lambda)$ to $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$

$$
(\Delta, \alpha, \lambda) \rightarrow \operatorname{End}_{\mathbb{F} G}(V \uparrow): \sum_{i=0}^{p-1} \delta_{i} x^{i} \mapsto \sum_{i=0}^{p-1} D\left(\delta_{i}\right) X^{i}
$$

where
(5a,b) $\quad X=\left(\begin{array}{cccc}0 & I & & 0 \\ & & \ddots & \\ 0 & 0 & & I \\ \lambda & 0 & & 0\end{array}\right), \quad D(\delta)=\left(\begin{array}{llll}\delta & & & \\ & \alpha(\delta) & & \\ & & \ddots & \\ & & & \alpha^{p-1}(\delta)\end{array}\right)$
and $\delta \in \Delta$.
Proof. By Lemma 1, $\alpha^{-i} a^{i}: V \rightarrow V a^{i}$ is an $\mathbb{F} H$-isomorphism. Hence $h \sigma \uparrow$ is the $p \times p$ block scalar matrix given by Eqn (4b). Similarly, $a \sigma \uparrow$ is given by Eqn (4a) as
$\left(v \alpha^{-i} a^{i}\right) a=v \alpha \alpha^{-(i+1)} a^{i+1} \quad$ and $\quad\left(v \alpha^{-(p-1)} a^{p-1}\right) a=v \alpha\left(\alpha^{-p} a^{p}\right)=v \alpha \lambda$ where the last step follows from Eqn (2a).

We follow [J96] and write $R=\Delta[t ; \alpha]$ for the twisted polynomial ring with the usual addition, and multiplication determined by $t \delta=\alpha(\delta) t$ for $\delta \in \Delta$. The right ideal $\left(t^{p}-\lambda\right) R$ is two-sided as

$$
t\left(t^{p}-\lambda\right)=\left(t^{p}-\lambda\right) t \quad \text { and } \quad \delta\left(t^{p}-\lambda\right)=\left(t^{p}-\lambda\right) \lambda^{-1} \delta \lambda
$$

by virtue of Eqns (2b) and (2c). The general cyclic algebra (Δ, α, λ) is defined to be the quotient ring $R /\left(t^{p}-\lambda\right) R$. Since R is a (left) euclidean domain, the elements of $(\Delta, \alpha, \lambda)$ may be written uniquely as $\sum_{i=0}^{p-1} \delta_{i} x^{i}$ where $x=t+\left(t^{p}-\lambda\right) R$, and multiplication is determined by the rules $x^{p}=\lambda$ and $x \delta=\alpha(\delta) x$ where $\delta \in \Delta$.

The matrices commuting with $H \sigma \uparrow$ are precisely the block matrices $\left(\delta_{i, j}\right)_{0 \leq i, j<p}$ where $\delta_{i, j} \in \Delta$. To compute $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$, we determine the matrices $\left(\delta_{i, j}\right)$ that commute with $a \sigma \uparrow$. If $0<i<p-1$, then comparing row $i-1$ of both sides of $(a \sigma \uparrow)\left(\delta_{i, j}\right)=\left(\delta_{i, j}\right)(a \sigma \uparrow)$ shows how to express $\delta_{i, j}$ in terms of the $\delta_{i-1, k}$. Similarly, row $p-1$ shows how to express $\delta_{p-1, j}$ in terms of $\delta_{0, k}$. It follows that a matrix $\left(\delta_{i, j}\right)$ commuting with $a \sigma \uparrow$ is completely determined once we know the 0 th row $\delta_{0, j}$. We show that the 0th row can be arbitrary. The 0th row of $\sum_{i=0}^{p-1} D\left(\delta_{i}\right) X^{i}$ is $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{p-1}\right)$. This element lies in Γ as we show that $D\left(\delta_{i}\right), X \in \Gamma$.

To see that $D(\delta) \in \Gamma$, we show that $(a \sigma \uparrow) D(\delta)=D(\delta)(a \sigma \uparrow)$. The first product equals

$$
(a \sigma \uparrow) D(\delta)=\left(\begin{array}{cccc}
0 & \delta \alpha & & 0 \\
& & \ddots & \\
0 & 0 & & \alpha^{-(p-2)} \delta \alpha^{p-1} \\
\alpha \lambda \delta & 0 & & 0
\end{array}\right)
$$

and the second product is identical if $\alpha \lambda \delta=\delta^{\alpha^{p-1}} \alpha \lambda$. However, this is true by Eqn (2c). To see that $X \in \Gamma$, write $a \sigma \uparrow=A X$ where $A=\operatorname{diag}(\alpha, \ldots, \alpha)$. It follows from Eqn (2b) that A and X commute. Therefore $a \sigma \uparrow=A X$ and X commute.

In summary, elements of Γ may be written uniquely as $\sum_{i=0}^{p-1} D\left(\delta_{i}\right) X^{i}$ where $\delta_{i} \in \Delta$. Since $X^{p}=\lambda I$ and $X D(\delta)=D(\alpha(\delta)) X$ it follows that the map $\sum_{i=0}^{p-1} \delta_{i} x^{i} \mapsto \sum_{i=0}^{p-1} D\left(\delta_{i}\right) X^{i}$ is an isomorphism $(\Delta, \alpha, \lambda) \rightarrow \Gamma$ as claimed.

A consequence of Eqn (2c) is that α has order p or 1 modulo the inner automorphisms of Δ. It follows from the Skolem-Noether theorem [CR90,3.62] that the order of α modulo inner automorphisms is precisely the order of the restriction $\alpha \mid Z$, where $Z=Z(\Delta)$ is the centre of Δ.

4. The case when $\alpha \mid Z$ has order p

In this section we determine the structure of $\Gamma:=\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ in the case when α induces an automorphism of order p on the field $Z(\Delta)$.

Of primary interest to us is Part (a) of the following classical theorem. Although this result can be deduced from [J96, Theorem 1.1.22] and the fact that $t^{p}-\lambda$ is a 'two-sided maximal' element of $\Delta[t ; \alpha]$, we prefer to give an elementary proof which generalizes [L91, Theorem 14.6].

Theorem 4. Let Γ be the general cyclic algebra $(\Delta, \alpha, \lambda)$ where $\lambda \neq 0$ and $\alpha(\lambda)=\lambda$. Suppose that $\alpha \mid Z(\Delta)$ has order p, and fixed subfield Z_{0}.

Then
(a) Γ is a simple Z_{0}-algebra,
(b) $C_{\Gamma}(\Delta)=Z(\Delta)$,
(c) $Z(\Gamma)=Z_{0}$, and
(d) $\left|\Gamma: Z_{0}\right|=(p \operatorname{Deg}(\Delta))^{2}$ where $|\Delta: Z(\Delta)|=\operatorname{Deg}(\Delta)^{2}$.

Proof. The following proof does not assume that p is prime. Let $\gamma=\gamma_{1} x^{i_{1}}+\cdots+\gamma_{r} x^{i_{r}}$ be a nonzero element of an ideal I of Γ, where $0 \leq i_{1}<\cdots<i_{r}<p, \gamma_{i} \in \Delta$, and r is chosen minimal. By minimality, each γ_{i} is nonzero. To prove Part (a) it suffices to prove that $r=1$. Then $I=\Gamma$ as $\gamma_{1} x^{i_{1}} \in I$ is a unit because γ_{1} and x are both units. Assume now that $r>1$. Then

$$
\left(\gamma_{1} \alpha^{i_{1}}(\delta) \gamma_{1}^{-1}\right) \gamma-\gamma \delta=\sum_{k=2}^{r}\left(\gamma_{1} \alpha^{i_{1}}(\delta) \gamma_{1}^{-1} \gamma_{k}-\gamma_{k} \alpha^{i_{k}}(\delta)\right) x^{i_{k}}
$$

lies in I for each $\delta \in \Delta$. By the minimality of r, each coefficient of $x^{i_{k}}$ is zero. This implies that $\alpha^{i_{1}}$ equals $\alpha^{i_{k}}$ modulo inner automorphisms for $k=2, \ldots, r$. This contradiction proves Part (a).

The proofs of Parts (b) and (c) are straightforward, so we shall omit their proofs. Part (d) follows from $|\Gamma: \Delta|=\left|Z(\Delta): Z_{0}\right|=p$, and $|\Delta: Z(\Delta)|=\operatorname{Deg}(\Delta)^{2}$ is a square.

Before proceeding to Theorem 5, we define the left- and right-twisted powers, $\mu^{\sqsupset i}$ and $\mu^{i \sqsubset}$, where $\mu \in \Delta$ and $i \in \mathbb{Z}$. These expressions are like norms, indeed Jacobson [J96] uses the notation $N_{i}(\mu)$ to suggest this. These "norms", however, are not multiplicative in general. Consider the twisted polynomial ring $\Delta[t ; \alpha]$ and define

$$
(\mu t)^{i}=\mu^{\sqsupset i} t^{i}, \quad \text { and } \quad(t \mu)^{i}=t^{i} \mu^{i \sqsubset}
$$

for $\mu \in \Delta$ and $i \in \mathbb{Z}$. It follows from the power laws $(\mu t)^{i}(\mu t)^{j}=(\mu t)^{i+j}$ and $\left((\mu t)^{i}\right)^{j}=(\mu t)^{i j}$ that

$$
\mu^{\sqsupset i} \alpha^{i}\left(\mu^{\sqsupset j}\right)=\mu^{\sqsupset(i+j)}, \quad \text { and } \quad \mu^{\sqsupset i} \alpha^{i}\left(\mu^{\sqsupset i}\right) \cdots \alpha^{i(j-1)}\left(\mu^{\sqsupset i}\right)=\mu^{\sqsupset(i j)}
$$

for $i, j \in \mathbb{Z}$. Similar laws hold for right-twisted powers. The left-twisted powers of nonnegative integers can be defined by the recurrence relation

$$
\begin{equation*}
\mu^{\sqsupset 0}=1, \quad \text { and } \quad \mu^{\sqsupset(i+1)}=\mu^{\sqsupset i} \alpha^{i}(\mu)=\mu \alpha\left(\mu^{\sqsupset i}\right) \quad \text { for } i \geq 0, \tag{6}
\end{equation*}
$$

and negative powers can be defined by $\mu^{\sqsupset-i}=\alpha^{i}\left(\mu^{\sqsupset i}\right)^{-1}$.
It is important in the sequel whether or not λ^{-1} has a left-twisted p th root.
Theorem 5. Let V be a G-stable irreducible $\mathbb{F} H$-module where $H \triangleleft G$ and $|G / H|=p$ is prime. Let α and λ be as in Lemma 2. Suppose that $\alpha \mid Z$ has order p where $Z=Z(\Delta)$ and $\Delta=\operatorname{End}_{\mathbb{F} G}(V)$.
(a) If the equation $\mu^{\sqsupset p}=\lambda^{-1}$ has no solution for $\mu \in \Delta^{\times}$, then $V \uparrow$ is irreducible, and $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ is isomorphic to the general cyclic algebra $(\Delta, \alpha, \lambda)$ as per Theorem 3.
(b) If $\mu \in \Delta^{\times}$satisfies $\mu^{\sqsupset p}=\lambda^{-1}$, then $V \uparrow=U\left(\mu_{0}\right) \dot{+} \cdots \dot{+} U\left(\mu_{p-1}\right)$ where

$$
U\left(\mu_{j}\right)=V \sum_{i=0}^{p-1} \mu_{j}^{\sqsupset i} \alpha^{-i} a^{i} \quad(j=0,1, \ldots, p-1)
$$

are isomorphic irreducible submodules satisfying $U\left(\mu_{j}\right) \downarrow \cong V$, and where $\mu_{j}^{\sqsupset p}=\lambda^{-1}$. Moreover, if $\rho: G \rightarrow \mathrm{GL}(U(\mu))$ is the representation afforded by $U(\mu)$ relative to the basis $e_{0}^{\prime}, \ldots, e_{p-1}^{\prime}$ where

$$
e_{j}^{\prime}=e_{j} \sum_{i=0}^{p-1} \mu^{\sqsupset i} \alpha^{-i} a^{i} \quad(j=0,1, \ldots, d-1),
$$

then $a \rho=\alpha \mu^{-1}, h \rho=h \sigma$ for $h \in H$, and

$$
\operatorname{End}_{\mathbb{F} G}(U(\mu))=C_{\Delta}\left(\alpha \mu^{-1}\right)=\left\{\delta \in \Delta \mid \delta^{\alpha}=\delta^{\mu}\right\} .
$$

Proof. By Theorem 4(a), $(\Delta, \alpha, \lambda)$ is a simple ring. In Part(a) more is true: $(\Delta, \alpha, \lambda)$ is a division ring by [J96, Theorem 1.3.16]. By Theorem 3, $(\Delta, \alpha, \lambda)$ is isomorphic to $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ and so we have proved that $V \uparrow$ is irreducible as desired.

Consider Part (b). Let $s=\mu t$ be an element of the twisted polynomial ring $\Delta[t ; \alpha]$, then $s^{i}=(\mu t)^{i}=\mu^{\sqsupset i} t^{i}$ and

$$
s \delta=\mu t \delta=\left(\mu \alpha(\delta) \mu^{-1}\right) \mu t=\mu \alpha(\delta) \mu^{-1} s .
$$

Therefore the map $\Delta[t ; \alpha] \rightarrow \Delta\left[s ; \alpha \mu^{-1}\right]: \sum_{i=0}^{p-1} \delta_{i} t^{i} \mapsto \sum_{i=0}^{p-1} \delta_{i}\left(\mu^{\sqsupset i}\right)^{-1} s^{i}$ is an isomorphism. We are abusing notation here by identifying $\alpha \mu^{-1}$ in $\operatorname{Aut}_{\mathbb{F}}(V)$ with $\delta \mapsto \delta^{\alpha \mu^{-1}}$ in $\operatorname{Aut}_{\mathbb{F}}(\Delta)$. If $y=\mu x$, then

$$
y^{p}=(\mu x)^{p}=\mu^{\sqsupset p} \lambda=\lambda^{-1} \lambda=1 .
$$

By taking quotients we get an isomorphism $(\Delta, \alpha, \lambda) \rightarrow\left(\Delta, \alpha \mu^{-1}, 1\right)$ given by

$$
\sum_{i=0}^{p-1} \delta_{i} x^{i} \mapsto \sum_{i=0}^{p-1} \delta_{i}\left(\mu^{\sqsupset i}\right)^{-1} y^{i}
$$

where $x=t+\left(t^{p}-\lambda\right)$ and $y=s+\left(s^{p}-1\right)$.
As $y^{p}-1=(y-1)\left(y^{p-1}+\cdots+y+1\right)$, and $\Delta\left[s, \alpha \mu^{-1}\right]$ is right euclidean it follows that $(y-1)\left(\Delta, \alpha \mu^{-1}, 1\right)$ is a maximal right ideal of $\left(\Delta, \alpha \mu^{-1}, 1\right)$. Now $y-1$ corresponds to $\mu x-1$ which corresponds to $D(\mu) X-1$ whose kernel gives rise to the irreducible submodule $U(\mu)$ of $V \uparrow$ in the statement of Part(b). We shall reprove this, and prove a little more, using a more elementary argument.

Let U be a submodule of $V \uparrow$ satisfying $U \downarrow \cong V$. Let $\phi: V \rightarrow V \uparrow$ be an $\mathbb{F} H$-homomorphism such that $V \phi=U \downarrow$. Let $\pi_{i}: V \uparrow \rightarrow V a^{i}$ be the $\mathbb{F} H$-epimorphism given by $\left(\sum_{i=0}^{p-1} v_{i} \alpha^{-i} a^{i}\right) \pi_{i}=v_{i} \alpha^{-i} a^{i}$. Then $\delta_{i}=\phi \pi_{i} a^{-i} \alpha^{i}$ is an $\mathbb{F} H$-homomorphism $V \rightarrow V$, or an element of Δ. Since $\pi_{0}+\pi_{1}+\cdots+\pi_{p-1}$ is the identity map $1: V \uparrow \rightarrow V \uparrow$, it follows that

$$
\phi=\phi 1=\phi\left(\pi_{0}+\pi_{1}+\cdots+\pi_{p-1}\right)=\sum_{i=0}^{p-1} \delta_{i} \alpha^{-i} a^{i}
$$

We now view ϕ as a map $V \rightarrow U$ and note that $U=U a$. Then $\alpha^{-1} a: V \rightarrow V a, a^{-1} \phi a: V a \rightarrow U a$ and $\phi^{-1}: U a \rightarrow V$ are each $\mathbb{F} H-$ isomorphisms. Hence their composite, $\left(\alpha^{-1} a\right)\left(a^{-1} \phi a\right) \phi^{-1}$ is an isomorphism $V \rightarrow V$, denoted μ^{-1} where $\mu \in \Delta^{\times}$. Rearranging gives $\phi a=\alpha \mu^{-1} \phi$. Therefore,

$$
(v \phi) a=\left(v \sum_{i=0}^{p-1} \delta_{i} \alpha^{-i} a^{i}\right) a=v \alpha \mu^{-1} \sum_{i=0}^{p-1} \delta_{i} \alpha^{-i} a^{i}
$$

for all $v \in V$. The expression $\left(v \delta_{i} \alpha^{-i} a^{i}\right) a$ equals

$$
v \delta_{i} \alpha \alpha^{-(i+1)} a^{i+1}=v \alpha \delta_{i}^{\alpha} \alpha^{-(i+1)} a^{i+1}=v \alpha \mu^{-1} \delta_{i+1} \alpha^{-(i+1)} a^{i+1} .
$$

Setting $i=p-1$ gives

$$
\left(v \delta_{p-1} \alpha^{-(p-1)} a^{p-1}\right) a=v \alpha \delta_{p-1}^{\alpha} \alpha^{-p} a^{p}=v \alpha \delta_{p-1}^{\alpha} \lambda=v \alpha \mu^{-1} \delta_{0} .
$$

Therefore $\delta_{i}^{\alpha}=\mu^{-1} \delta_{i+1}$ for $i=0, \ldots, p-2$ and $\delta_{p-1}^{\alpha} \lambda=\mu^{-1} \delta_{0}$. If $\delta_{0}=0$, then each $\delta_{i}=0$ and $\phi=0$, a contradiction. Thus $\delta_{0} \neq 0$ and as $V \delta_{0}^{-1} \phi=U$, we may assume that $\delta_{0}=1$. It follows from Eqn (6) that $\delta_{i}=\mu^{\sqsupset i}$ is the solution to the recurrence relation: $\delta_{0}=1$ and $\mu \delta_{i}^{\alpha}=\delta_{i+1}$ for $i \geq 0$. Furthermore $\mu \delta_{p-1}^{\alpha}=\lambda^{-1}$ implies that $\mu^{\sqsupset p}=\lambda^{-1}$. In summary, any submodule U of $V \uparrow$ satisfying $U \downarrow \cong V$ equals $U(\mu)$ for some μ satisfying $\mu^{\sqsupset p}=\lambda^{-1}$. Furthermore, by retracing the above argument, if $\mu^{\sqsupset p}=\lambda^{-1}$, then $U(\mu)$ is an irreducible submodule of $V \uparrow$ satisfying $U \downarrow \cong V$.

As $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$ is a simple ring, $V \uparrow$ is a direct sum of isomorphic simple submodules. Therefore, $V \uparrow=U\left(\mu_{0}\right) \dot{+} \cdots \dot{+} U\left(\mu_{p-1}\right)$ as desired. It follows from Lemma 1 that the representation $\rho: G \rightarrow \operatorname{GL}(V)$ satisfies $a \rho=\alpha \mu^{-1}$ and $h \rho=h \sigma$ for $h \in H$. Consequently, the matrices commuting with $G \rho$ equal the elements of Δ centralizing $a \rho$. Hence $\operatorname{End}_{\mathbb{F} G}(U(\mu))=C_{\Delta}\left(\alpha \mu^{-1}\right)$ as claimed.

5. The case when α IS inner

In this section assume that $\alpha \mid Z(\Delta)$ has order 1 , or equivalently by the Skolem-Noether theorem, that α is inner. Fix $\varepsilon \in \Delta^{\times}$such that α is the
inner automorphism $\alpha(\delta)=\varepsilon^{-1} \delta \varepsilon$. Clearly $\alpha(\varepsilon)=\varepsilon$ and by Eqn (2c) $\varepsilon^{-p} \delta \varepsilon^{p}=\alpha^{p}(\delta)=\lambda \delta \lambda^{-1}$. Therefore, $\eta=\varepsilon^{p} \lambda \in Z(\Delta)$. If $y=\varepsilon x$, then $y^{p}=\varepsilon^{\sqsupset p} x^{p}=\varepsilon^{p} \lambda=\eta$ and $y \delta=\varepsilon x \delta=\varepsilon \delta^{\varepsilon} x=\delta \varepsilon x=\delta y$. Hence

$$
\begin{equation*}
(\Delta, \alpha, \lambda) \rightarrow(\Delta, 1, \eta): \sum_{i=0}^{p-1} \delta_{i} x^{i} \mapsto \sum_{i=0}^{p-1} \delta_{i} \varepsilon^{-i} y^{i} \tag{8}
\end{equation*}
$$

is an isomorphism. Thus we may untwist $\operatorname{End}_{\mathbb{F} G}(V \uparrow)$.
Theorem 6. Let V be a G-stable irreducible $\mathbb{F} H$-module where $H \triangleleft G$ and $|G / H|=p$ is prime. Suppose that α induces the inner automorphism $\alpha(\delta)=\delta^{\varepsilon}$ of the division algebra $\Delta=\operatorname{End}_{\mathbb{F} H}(V)$. Then $\eta=\varepsilon^{p} \lambda \in Z^{\times}$where $Z=Z(\Delta)$. Suppose that $s^{p}-\eta=\nu(s) \mu(s)$ where $\mu(s)=\sum_{i=0}^{m} \mu_{i} s^{i}$ and $\nu(s)=\sum_{i=0}^{p-m} \nu_{i} s^{i}$, are monic polynomials in $\Delta[s]$. Then $W_{\mu}=\sum_{i=0}^{m-1} V \sum_{j=0}^{p-m} \nu_{j} \varepsilon^{i+j} \alpha^{-(i+j)} a^{i+j}$ is a submodule of $V \uparrow$. Let $\rho: G \rightarrow \mathrm{GL}\left(W_{\mu}\right)$ be the representation afforded by W_{μ} relative to the basis

$$
\begin{equation*}
e_{0}^{\prime}, \ldots, e_{d-1}^{\prime}, \ldots, e_{j}^{\prime}(\varepsilon X)^{k}, \ldots, e_{0}^{\prime}(\varepsilon X)^{m-1}, \ldots, e_{d-1}^{\prime}(\varepsilon X)^{m-1} \tag{9}
\end{equation*}
$$

where

$$
e_{k}^{\prime}=e_{k} \sum_{j=0}^{p-m} \nu_{j} \varepsilon^{j} \alpha^{-j} a^{j}=e_{k} \sum_{j=0}^{p-m} \nu_{j}(\varepsilon X)^{j},
$$

and X is given by Eqn (5a). Then

$$
a \rho=\alpha \varepsilon^{-1}\left(\begin{array}{cccc}
0 & 1 & & 0 \tag{10}\\
& & \ddots & \\
0 & 0 & & 1 \\
-\mu_{0} & -\mu_{1} & & -\mu_{m-1}
\end{array}\right)
$$

and $h \rho=\operatorname{diag}(h \sigma, \ldots, h \sigma)$ where $h \in H$. Moreover,

$$
\operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right)=\left\{\sum_{i=0}^{m-1} \delta_{i}(a \rho)^{i} \mid \delta_{i} \in \Delta\right\} .
$$

If $\mu(s) \in Z[s]$, then $\operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right) \cong \Delta[s] / \mu(s) \Delta[s] \cong \Delta \otimes_{Z} \mathbb{K}$ where $\mathbb{K}=Z[s] / \mu(s) Z[s]$.
Proof. Arguing as in Theorem 5, we have a series of right ideals: $\nu(s) \Delta[s] \subseteq \Delta[s], \nu(y)(\Delta, 1, \eta) \subseteq(\Delta, 1, \eta), \nu(\varepsilon x)(\Delta, \alpha, \lambda) \subseteq(\Delta, \alpha, \lambda)$, and $\sum_{i=0}^{n} D\left(\nu_{i}\right)(\varepsilon X)^{i} \Gamma$ is a right ideal of $\Gamma=\operatorname{End}_{\mathbb{F} G}(V \uparrow)$. This right ideal corresponds to the submodule $V \uparrow \sum_{i=0}^{n} D\left(\nu_{i}\right)(\varepsilon X)^{i} \Gamma$ of $V \uparrow$. It follows from Eqn (5a) and $(\varepsilon X)^{p}-\eta=0$ that the minimum polynomial of εX equals $s^{p}-\eta$.

Let $v^{\prime}=v \nu(\varepsilon X)$ where $v \in V$. Then

$$
\begin{equation*}
v^{\prime} \mu(\varepsilon X)=v \nu(\varepsilon X) \mu(\varepsilon X)=v\left((\varepsilon X)^{p}-\eta\right)=v 0=0 . \tag{11}
\end{equation*}
$$

This proves that (9) is a basis for

$$
W_{\mu}=\operatorname{im} \nu(\varepsilon X)=\operatorname{ker} \nu(\varepsilon X)=\sum_{i=0}^{m-1} V \sum_{j=0}^{n} \nu_{j} \varepsilon^{i+j} \alpha^{-(i+j)} a^{i+j}
$$

It follows from Lemma 1 that $h \rho=\operatorname{diag}(h \sigma, \ldots, h \sigma)$ is a block scalar matrix $(h \in H)$. Since $a=\alpha X$,

$$
\begin{equation*}
v^{\prime}(\varepsilon X)^{i} a=v^{\prime}(\varepsilon X)^{i} \alpha X=v^{\prime} \alpha \varepsilon^{-1}(\varepsilon X)^{i+1} \tag{12}
\end{equation*}
$$

It follows from Eqns (11) and (12) that the matrix for $a \rho$ is correct.
It is now a simple matter to show that $\left\{\sum_{i=0}^{m-1} \delta_{i}(a \rho)^{i} \mid \delta_{i} \in \Delta\right\}$ is contained in $\operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right)$. A familiar calculation shows that an element of $\operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right)$ is determined by the entries in its top row. As this may be arbitrary, we have found all the elements of $\operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right)$.

It follows from Theorem 6 that a necessary condition for W_{μ} to be irreducible is that $\mu(s)$ is irreducible in $\Delta[s]$. Lemma 7 describes an important case when $\operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right)$ is a division ring, and hence W_{μ} is irreducible. The following proof follows Prof. Deitmar's suggestion [D02].

Lemma 7. Let Δ be a division algebra with center \mathbb{F}, and let $\mu(s) \in \mathbb{F}[s]$ be irreducible of prime degree. Suppose that no $\delta \in \Delta$ satisfies $\mu(\delta)=0$. Then the quotient ring $\Delta[s] / \mu(s) \Delta[s]$ is a division algebra.
Proof. Let $\mathbb{K}=\mathbb{F}[s] / \mu(s) \mathbb{F}[s]$. Then \mathbb{K} is a field and $|\mathbb{K}: \mathbb{F}|=\operatorname{deg} \mu(s)$ is prime. Clearly $\mu(s) \Delta[s]$ is a two-sided ideal of $\Delta[s]$, and $\Delta[s] / \mu(s) \Delta[s]$ is isomorphic to $\Delta_{\mathbb{K}}=\Delta \otimes_{\mathbb{K}} \mathbb{K}$. By [L91, 15.1(3)], $\Delta_{\mathbb{K}}$ is a central simple \mathbb{K}-algebra, and hence is isomorphic to $M_{n}(D)$ for some division algebra D over \mathbb{F}. The degree of D and the Schur index of $\Delta_{\mathbb{K}}$ are defined as follows

$$
\operatorname{Deg}(D)=\left(\operatorname{dim}_{\mathbb{F}} D\right)^{1 / 2} \quad \text { and } \quad \operatorname{Ind}\left(\Delta_{\mathbb{K}}\right)=\operatorname{Deg}(D)
$$

By [P82, Prop. 13.4], $\operatorname{Ind}\left(\Delta_{\mathbb{K}}\right)$ divides $\operatorname{Ind}(\Delta)$, and $\operatorname{Ind}(\Delta)$ divides $|\mathbb{K}: \mathbb{F}| \operatorname{Ind}\left(\Delta_{\mathbb{K}}\right)$. Thus either

$$
\operatorname{Ind}\left(\Delta_{\mathbb{K}}\right)=\operatorname{Ind}(\Delta)=\operatorname{Deg}(\Delta)=\operatorname{Deg}\left(D_{\mathbb{K}}\right)
$$

and $\Delta_{\mathbb{K}}$ is a division algebra by [P82, Prop. 13.4(ii)], or $\operatorname{Ind}(\Delta)$ equals $|\mathbb{K}: \mathbb{F}| \operatorname{Ind}\left(\Delta_{\mathbb{K}}\right)$. If the second case occurred, then by [P82, Cor. 13.4], \mathbb{K} is isomorphic to a subfield of Δ, and so $\mu(s)$ has a root in Δ, contrary to our hypothesis.

If $\eta \notin \Delta^{p}$, then $\eta \notin Z^{p}$ and so $s^{p}-\eta$ is irreducible in $Z[s]$, and it follows from Lemma 7 that $V \uparrow=W_{s^{p}-\eta}$ is irreducible. Note that $\operatorname{End}_{\mathbb{F} G}(V \uparrow) \cong \Delta \otimes Z\left[\eta^{1 / p}\right]$ is a division algebra.

6. The case when α IS InNer and $\xi^{p}=\eta$

In this section we shall assume that $\xi \in \Delta^{\times}$satisfies $\xi^{p}-\eta=0$. Let $y=\varepsilon x$ and $z=\xi^{-1} y=\xi^{-1} \varepsilon x$. It is useful to consider the isomorphisms $(\Delta, \alpha, \lambda) \rightarrow(\Delta, 1, \eta) \rightarrow(\Delta, 1,1)$ defined by $x \mapsto \varepsilon^{-1} y$ and $y \mapsto \xi z$. Note y and z are central in $(\Delta, 1, \eta)$ and $(\Delta, 1,1)$ respectively, and $y^{p}=\eta$ and $z^{p}=1$.
Theorem 8. Let V be a G-stable irreducible $\mathbb{F} H$-module where $H \triangleleft G$ and $|G / H|=p$ is prime. Suppose that α induces the inner automorphism $\alpha(\delta)=\delta^{\varepsilon}$ of the division algebra $\Delta=\operatorname{End}_{\mathbb{F} H}(V)$. Set $\eta=\varepsilon^{p} \lambda$ and let $\xi, \omega \in \Delta$ satisfy $\xi^{p}=\eta$ and $\omega^{p}=1$. Then $\xi \in Z=Z(\Delta)$.
(a) If $\operatorname{char}(\mathbb{F}) \neq p$ and $\omega \neq 1$, then $V \uparrow$ is an internal direct sum

$$
V \uparrow=U(\xi) \dot{+} U(\xi \omega) \dot{+} \cdots \dot{+} U\left(\xi \omega^{p-1}\right)
$$

where

$$
U\left(\xi \omega^{j}\right)=V \sum_{i=0}^{p-1}\left(\xi \omega^{j}\right)^{-i} \varepsilon^{i} \alpha^{-i} a^{i}
$$

is irreducible, and $U(\xi \omega) \cong U\left(\xi \omega^{\prime}\right)$ if and only if ω and ω^{\prime} are conjugate in Δ. If $\mu(s)$ is an irreducible factor of $s^{p}-\eta$ in $Z[s]$, then W_{μ} defined in Theorem 6 is a Wedderburn component of $V \uparrow$, and $W_{\mu}=U\left(\theta_{1}\right) \dot{+} \cdots \dot{+} U\left(\theta_{n}\right)$ where $\theta_{1}, \ldots, \theta_{n}$ are the roots of $\mu(s)$ in the field $Z(\xi, \omega)$. In addition, the representation $\rho_{\theta}: G \rightarrow \operatorname{GL}(U(\theta))$ afforded by $U(\theta)$ relative to the basis $e_{0}^{\prime}, \ldots, e_{d-1}^{\prime}$ where

$$
e_{j}^{\prime}=e_{j} \sum_{i=0}^{p-1} \theta^{-i} \varepsilon^{i} \alpha^{-i} a^{i}
$$

satisfies

$$
\begin{equation*}
a \rho_{\theta}=\alpha \varepsilon^{-1} \theta \quad \text { and } \quad h \rho_{\theta}=h \sigma \tag{12a,b}
\end{equation*}
$$

for $h \in H$, and $\operatorname{End}_{\mathbb{F} G}(U(\theta))=C_{\Delta}(\theta)$.
(b) If $\operatorname{char}(\mathbb{F})=p$, then $\omega=1$ and $V \uparrow$ is uniserial with unique composition series $\{0\}=W_{0} \subset W_{1} \subset \cdots \subset W_{p}=V \uparrow$ where

$$
W_{k}=\sum_{i=1}^{k} V \sum_{j=0}^{p-i}\binom{i+j-1}{j} \xi^{-j} \varepsilon^{j} \alpha^{-j} a^{j}
$$

Moreover, $W_{k-1} / W_{k} \cong U(\xi)$ for $k=1, \ldots, p$ and $\operatorname{End}_{\mathbb{F} G}(U(\xi))=\Delta$.

Proof. Since $z \delta=\delta z$, we see that $\left(\xi^{-1} \varepsilon x\right) \delta=\delta\left(\xi^{-1} \varepsilon x\right)$. This implies that $\xi^{-1} \delta=\delta \xi^{-1}$ and so $\xi \in Z$.
Case (a): Now $(\xi \omega)^{p}=\xi^{p} \omega^{p}=\eta$, hence

$$
\begin{equation*}
y^{p}-\eta=y^{p}-(\xi \omega)^{p}=(y-\xi \omega)\left(\sum_{i=0}^{p-1}(\xi \omega)^{p-1-i} y^{i}\right) . \tag{13}
\end{equation*}
$$

Therefore $V \uparrow \sum_{i=0}^{p-1}(\xi \omega)^{p-1-i}(\varepsilon X)^{i} \Gamma$ is a submodule of $V \uparrow$ where X is given by Eqn (5a). We show directly that $U(\xi \omega)$ is a submodule of $V \uparrow$. This follows from

$$
\begin{align*}
\left(v(\xi \omega)^{-i} \varepsilon^{i} \alpha^{-i} a^{i}\right) a & =v \alpha\left(\alpha^{-1}(\xi \omega)^{-i} \varepsilon^{i} \alpha\right) \alpha^{-(i+1)} a^{i+1} \\
& =v \alpha \varepsilon^{-1} \xi \omega(\xi \omega)^{-(i+1)} \varepsilon^{i+1} \alpha^{-(i+1)} a^{i+1} \tag{14}
\end{align*}
$$

and setting $i=p-1$ in the right-hand side of Eqn (14) gives

$$
v \alpha \varepsilon^{-1} \xi \omega(\xi \omega)^{-p} \varepsilon^{p} \alpha^{-p} a^{p}=v \alpha \varepsilon^{-1} \xi \omega \eta^{-1} \varepsilon^{p} \lambda=v \alpha \varepsilon^{-1} \xi \omega .
$$

As $U(\xi \omega) \downarrow \cong V$, we see that $U(\xi \omega)$ is an irreducible $\mathbb{F} G$-submodule of $V \uparrow$. Setting $\theta=\xi \omega$ establishes the truth of Eqns (12a,b).

We may calculate $\operatorname{Hom}\left(U(\xi \omega), U\left(\xi \omega^{\prime}\right)\right)$ directly by finding all δ in $\operatorname{End}_{\mathbb{F}}(V)$ that intertwine $\rho_{\xi \omega}$ and $\rho_{\xi \omega^{\prime}}$. As δ intertwines $h \rho_{\xi \omega}$ and $h \rho_{\xi \omega^{\prime}}$, it follows that δ commutes with $H \sigma$, and hence $\delta \in \Delta$. Also

$$
\delta\left(\alpha \varepsilon^{-1} \xi \omega\right)=\left(\alpha \varepsilon^{-1} \xi \omega^{\prime}\right) \delta
$$

so $\delta^{\alpha \varepsilon^{-1}} \xi \omega=\xi \omega^{\prime} \delta$. Since $\xi \in Z^{\times}$and $\delta^{\alpha \varepsilon^{-1}}=\delta$, this amounts to $\delta \omega=\omega^{\prime} \delta$. Setting $i=j$ shows that $\operatorname{End}_{\mathbb{F} G}(U(\xi \omega))=C_{\Delta}(\omega)$.

The Galois group $\operatorname{Gal}(Z(\omega): Z)$ is cyclic of order dividing $p-1$. Also ω and ω^{\prime} are conjugate in $\operatorname{Gal}(Z(\omega): Z)$ if and only if they share the same minimal polynomial over Z. The latter holds by Dixon's Theorem [L91, 16.8] if and only if ω and ω^{\prime} are conjugate in Δ. Note that ω and ω^{\prime} share the same minimal polynomial over Z precisely when $\xi \omega$ and $\xi \omega^{\prime}$ share the same minimal polynomial. This proves that W_{μ} is a Wedderburn component of $V \uparrow$.

Case (b): Suppose now that $\operatorname{char}(\mathbb{F})=p$. Then $\omega=1$ and Eqn (13) becomes $y^{p}-\eta=(y-\xi)^{p}=(y-\xi)\left(\sum_{i=0}^{p-1}\binom{p-1}{i}(-\xi)^{p-1-i} y^{i}\right)$. As
$\Gamma=\operatorname{End}_{\mathbb{F} G}(V \uparrow) \cong(\Delta, \alpha, \lambda) \cong(\Delta, 1, \eta) \cong(\Delta, 1,1) \cong \Delta[z] /(z-1)^{p} \Delta[z]$
has a unique composition series, so too does $V \uparrow$. By noting that $z=\xi^{-1} \varepsilon x$ and $D\left(\xi^{-1} \varepsilon\right)=\xi^{-1} \varepsilon$, we see that $W_{i}=V \uparrow\left(\xi^{-1} \varepsilon X-1\right)^{p-i} \Gamma$ defines the unique composition series for $V \uparrow$ where X is given by Eqn (5a).

Let R be the diagonal matrix $\operatorname{diag}\left(1, \xi^{-1} \varepsilon, \ldots,\left(\xi^{-1} \varepsilon\right)^{p-1}\right)$, and let S be the matrix whose (i, j) th block is the binomial coefficient $\binom{i}{j}$ where
$0 \leq i, j<p$. A direct calculation verifies that $R\left(\xi^{-1} \varepsilon X\right) R^{-1}=C$ and $S^{-1} C S=J$ where

$$
C=\left(\begin{array}{cccc}
0 & 1 & & 0 \\
& & \ddots & \\
0 & 0 & & 1 \\
1 & 0 & & 0
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{cccc}
1 & 1 & & \\
& \ddots & & \\
& & 1 & 1 \\
& & & 1
\end{array}\right)
$$

Therefore $\xi^{-1} \varepsilon X-1=T^{-1}(J-1) T$ where $T=S^{-1} R$, and hence

$$
W_{k}=V \uparrow\left(\xi^{-1} \varepsilon X-1\right)^{p-k}=V \uparrow T^{-1}(J-1)^{p-k} T=V \uparrow(J-1)^{p-k} T .
$$

It is easily seen that $\operatorname{im}(J-1)^{p-k}=\operatorname{ker}(J-1)^{k}$ is the subspace $(0, \ldots, 0, V, \ldots, V)$ where the first V is in column $p-k$. The (i, j) th entry of $T=S^{-1} R$ is $(-1)^{i+j}\binom{i}{j}\left(\xi^{-1} \varepsilon\right)^{j}$. The last row of T gives

$$
W_{1}=V \sum_{j=0}^{p-1}(-1)^{p-1+j}\binom{p-1}{j}\left(\xi^{-1} \varepsilon\right)^{j} \alpha^{-j} a^{j} .
$$

More generally, the last k rows of T give

$$
W_{k}=\sum_{i=1}^{k} V \sum_{j=0}^{p-i}(-1)^{p-i+j}\binom{p-i}{j}\left(\xi^{-1} \varepsilon\right)^{j} \alpha^{-j} a^{j} .
$$

Since $p-i-\ell=-(i+\ell)$ in a field (such as \mathbb{F}) of characteristic p, we see that $\binom{p-i}{j}=(-1)^{j}\binom{i+j-1}{j}$ and the formula for W_{k} simplifies to

$$
W_{k}=\sum_{i=1}^{k} V \sum_{j=0}^{p-i}\binom{i+j-1}{j} \xi^{-j} \varepsilon^{j} \alpha^{-j} a^{j} .
$$

Setting $k=1$ shows $W_{1}=U(\xi)$. A direct calculation shows that $W_{i-1} / W_{i} \cong U(\xi)$. We showed in Part (a) that $\operatorname{End}_{\mathbb{F} G}(U(\xi))$ equals $C_{\Delta}(\xi)=\Delta$.

In Case (a), $C_{\Delta}(\xi \omega)$ equals Δ precisely when $\omega \in Z$. If Δ is the rational quaternions, and ω is a primitive cube root of unity, then $C_{\Delta}(\omega)$ equals $\mathbb{Q}(\omega)$. There are infinitely many primitive cube roots of 1 in this case, and they form a conjugacy class of Δ by Dixon's Theorem (as they all satisfy the irreducible polynomial $s^{2}+s+1$ over \mathbb{Q}). Thus isomorphism of the submodules $U(\xi \omega)$ is governed by conjugacy in Δ, and not conjugacy in $\operatorname{Gal}(\mathbb{Q}(\omega): \mathbb{Q})$.

Finally, it remains to generalize Theorem 8(a) to allow for the possibility that Δ may not contain a primitive p th root of 1 .

Theorem 9. Let V be a G-stable irreducible $\mathbb{F} H$-module where $H \triangleleft G$ and $|G / H|=p$ is prime. Suppose that $\varepsilon, \xi \in \Delta$ satisfy $\alpha(\delta)=\delta^{\varepsilon}$
$(\delta \in \Delta)$ and $\xi^{p}-\eta=0$ where $\eta=\varepsilon^{p} \lambda \in Z=Z(\Delta)$. In addition, suppose that $\operatorname{char}(\mathbb{F}) \neq p$. Then $V \uparrow$ is an internal direct sum

$$
V \uparrow=W_{\mu_{1}} \dot{+} \cdots \dot{+} W_{\mu_{r}}
$$

where $s^{p}-\eta=\mu_{1}(s) \cdots \mu_{r}(s)$ is a factorization into monic irreducibles over Z, and where W_{μ} defined in Theorem 6. If $\mu(s)$ is a monic irreducible factor of $s^{p}-\eta$, and $\mu(s)=\nu_{1}(s) \cdots \nu_{n}(s)$ where the $\nu_{i}(s)$ are monic and irreducible in $\Delta[s]$, then W_{μ} is a Wedderburn component of $V \uparrow$, and $W_{\mu} \cong W_{\nu_{n}}^{\oplus n}$ where $W_{\nu_{n}}$ is an irreducible $\mathbb{F} G$-module and $\operatorname{End}_{\mathbb{F} G}\left(W_{\nu_{n}}\right)$ is given in Theorem 6. In addition,

$$
\operatorname{End}_{\mathbb{F} G}\left(W_{\nu_{n}}\right) \cong B / \nu_{n}(s) \Delta[s]
$$

where $B=\left\{\delta(s) \in \Delta[s] \mid \delta(s) \nu_{n}(s) \in \nu_{n}(s) \Delta[s]\right\}$ is the idealizer of the right ideal $\nu_{n}(s) \Delta[s]$.
Proof. Since $\operatorname{char}(\mathbb{F}) \neq p$, the monic polynomials $\mu_{1}(s), \ldots, \mu_{r}(s)$ are distinct and pairwise coprime in $Z[s]$. From this it follows that $V \uparrow$ equals $W_{\mu_{1}} \dot{+} \cdots \dot{+} W_{\mu_{r}}$. By Theorem $6, \operatorname{End}_{\mathbb{F} G}\left(W_{\mu}\right) \cong \Delta_{\mathbb{K}}$ where $\Delta_{\mathbb{K}} \cong \Delta[s] / \mu(s) \Delta[s] \cong \Delta \otimes_{Z} \mathbb{K}$, and \mathbb{K} is the field $Z[s] / \mu(s) Z[s]$. By $[\mathrm{L} 91,15.1(3)], \Delta_{\mathbb{K}}$ is a simple ring. Therefore $\mu(s) \Delta[s]$ is a twosided maximal ideal of $\Delta[s]$, and so $\mu(s)$ is called a two-sided maximal element of $\Delta[s]$. By [J96, Theorem 1.2.19(b)], $\Delta_{\mathbb{K}} \cong M_{n}(D)$ where D is the division ring $B / \nu_{n}(s) \Delta[s]$. Moreover, $Z\left(\Delta_{\mathbb{K}}\right) \cong Z\left(M_{n}(D)\right)$ so $\mathbb{K} \cong Z(D)$. Thus $W_{\mu} \cong W_{\nu_{n}}^{\oplus n}$ where $W_{\nu_{n}}$ is an irreducible submodule of $V \uparrow$ and $\operatorname{End}_{\mathbb{F} G}\left(W_{\nu_{n}}\right) \cong D$. In addition, ν_{1}, \ldots, ν_{n} are similar [J96, Def. 1.2.7], and $W_{\nu_{1}}, \ldots, W_{\nu_{n}}$ are isomorphic.

If $\mu(s), \mu^{\prime}(s)$ are distinct monic irreducible factors of $s^{p}-\eta$ in $Z[s]$ and $\nu(s), \nu^{\prime}(s)$ in $\Delta[s]$ are monic irreducible factors of $\mu(s)$ and $\mu^{\prime}(s)$ respectively, then it follows from [J96, Def. 1.2.7] that $\nu(s)$ and $\nu^{\prime}(s)$ are not similar. This means that an irreducible summand of W_{μ} is not isomorphic to an irreducible summand of $W_{\mu^{\prime}}$. Hence the W_{μ} are Wedderburn components as claimed.

Acknowledgment

I am very grateful to Prof. A. D. H. Deitmar for providing a proof [D02] of Lemma 7 in the case when $s^{p}-\eta$ has no root in Δ. I would also like to thank the referee for his/her helpful suggestions.

References

[CR90] C.W. Curtis and I. Reiner, Methods of Representation Theory: with Applications to Finite Groups and Orders, Vol. 1, Classic Library Edn, John Wiley and Sons, 1990.
[D02] A.D.H. Deitmar, sci.math.research, September 6, 2002.
[GK96] S.P. Glasby and L.G.Kovács, Irreducible modules and normal subgroups of prime index, Comm. Algebra 24 (1996), no. 4, 1529-1546. (MR 97a:20012)
[IL00] G. Ivanyos and K. Lux, Treating the exceptional cases of the MeatAxe, Experiment. Math. 9 (2000), no. 3, 373-381. (MR 2001j:16067)
[HR94] D.F. Holt and S. Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 1-16. (MR 95e:20023)
[J96] N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer-Verlag, 1996.
[L91] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics 131, Springer-Verlag, 1991.
[NP95] P.M. Neumann and C.E. Praeger, Cyclic matrices over finite fields, J. London Math. Soc. 52 (1995), no. 2, 263-284. (MR 96j:15017)
[P84] R.A. Parker, The computer calculation of modular characters (the meat-axe), Computational group theory (Durham, 1982), 267-274, Academic Press, London, 1984. (MR 84k:20041)
[P82] R. S. Pierce, Associative Algebras, Graduate Texts in Mathematics 88, Springer-Verlag, 1982.
S. P. GLASBY

Department of Mathematics
Central Washington University
WA 98926-7424, USA
GlasbyS@cwu.edu

