Modules induced from a normal subgroup of prime index

S.P. GLASBY

ABSTRACT. Let G be a finite group and H a normal subgroup
of prime index p. Let V be an irreducible FH-module and U a
quotient of the induced FG-module V1. We describe the struc-
ture of U, which is semisimple when char(F) # p and uniserial if
char(F) = p. Furthermore, we describe the division rings arising
as endomorphism algebras of the simple components of U. We use
techniques from noncommutative ring theory to study Endrg (V1)
and relate the right ideal structure of Endpg (V1) to the submodule
structure of V7.

2000 Mathematics subject classification: 20C40, 16535

1. INTRODUCTION

Throughout this paper G will denote a finite group and H will denote
a normal subgroup of prime index p. Furthermore, V' will denote an
irreducible (right) FH-module, and V1 =V ®py FG is the associated
induced FG-module. Let a be an element of G not in H, and let
A = Endpy (V) and I' := Endpg (V7).

This paper is motivated by the following problem: “Given an irre-
ducible FH-module V', where F is an arbitrary field, and a quotient U
of V1, determine the submodule structure of U and the endomorphism
algebras of the simple modules.” By Schur’s lemma, A is a division
algebra over I, so we shall need techniques from noncommutative ring
theory.

We determine the submodule structure of U by explicitly realizing
Endpg(U) as a direct sum of minimal right ideals, or as a local ring.
It suffices to solve our problem in the case when U = V1. Henceforth
U=V7.

In the case when F is algebraically closed of characteristic zero, it is
well known that two cases arise. Either V is not G-stable and V7 is
irreducible, or V is G-stable and V1 is a direct sum of p pairwise
nonisomorphic irreducible submodules. In [GK96] the structure of
V71 is analyzed in the case when I is an arbitrary field satisfying
char(F) # 0. The assumption that char(F) # 0 was made to ensure
that A is a field. The main theorem of [GK96] states that the structure

of V1 is divided into five cases when V is GG-stable. In this paper, we
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drop the hypothesis that char(F) # 0, and even more cases arise in the
stable case (Theorems 5, 8 and 9). Fortunately, all these cases can be
unified by considering the factorization of a certain binomial ¥ — X in
a twisted polynomial ring A[t; o], which is a (left and right) principal
ideal domain.

As we will focus on the case when F need not be algebraically
closed, a crucial role will be played by the endomorphism algebra
A = Endpy (V). In [GK96] the submodules of V1 are described up to
isomorphism. As this paper is motivated by computational applications
we will strive towards a higher standard: an explicit description of the
vectors in the submodule, and an explicit description of the matrices
in the endomorphism algebra of the submodule. This is easily achieved
in the non-stable case, which we describe for the sake of completeness.

2. THE NON-STABLE CASE

Let eg,e1,...,e4-1 be an F-basis for V and let o: H — GL(V) be
the representation afforded by the irreducible FH-module V relative
to this basis. The g-conjugate of o (¢ € G) is the representation
g — (ghg Yo, and we say that o is G-stable if for each g € G, o is
equivalent to its g-conjugate. In this section we shall assume that o is
not G-stable.

Let 07: G — GL(V) be the representation afforded by V7 relative
to the basis

-1 -1
€0y v v vy €41, €00y ..., E4_1G, ... €00 " . .. eq_1a’" .

Note that G/H = (aH) has order p, and we are writing e;a’ rather
than e; ® a’. Then

0 I 0 ho
N (*h)o
acl = 00 | ol = 5
a’o 0 0 (“""h)o

where h € H and “h = a’ha™®. The elements of Endgg(V'1) are the
matrices commuting with GoT, namely the p x p block scalar matrices
diag(d,...,0) where § € A.

We shall henceforth assume that V' is G-stable. In particular, assume
that we know a € Autp(V) satisfying

(1) (aha Yo = a(ho)a™ forall h € H.

There are ‘practical’ methods for computing «. A crude method in-
volves viewing (ah;a™')oa = a(h;o), where H = (hy,...,h,), as a
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system of (d/e)*r homogeneous linear equations over A in (d/e)? un-
knowns where e = |A : F|. The solution space is 1-dimensional if V' is
G-stable, and 0-dimensional otherwise. A more sophisticated method,
especially when char(F) # 0, involves using the meat-axe algorithm,
see [P84], [HR94], [IL00], and [NP95]. There is also a recursive method
for finding o which we shall not discuss here.

3. THE ELEMENTS OF Endpg(V'1)
In this section we explicitly describe the matrices in I' = Endpg (V1)
and give an isomorphism I' — (A, «,\) where (A, a,)) is a gen-
eral cyclic F-algebra, see [L91, 14.5]. It is worth recalling that if

char(FF) # 0, then the endomorphism algebra A is commutative. Even
in this case, though, I" can be noncommutative.

Lemma 1. Ifi € Z, then o %a’: V — Va' is an FH-isomorphism
between the submodules V and Va' of V1.

Proof. 1t follows from Eqn (1) that
=va'ha™" (iteZ,veV)

Replacing v by va~¢ gives va~ta’h = vha~'a’. Hence a~'a’ is an FH-
homomorphism, and since it is invertible, it is an F H-isomorphism. [

vatha™*

Conjugation by « induces an automorphism of A, which we also
call a. [Proof: Conjugating the equation hd = dh by « and using (1)
shows that a~'da € A.] We abbreviate a 'da = §* by a(d). The
reader can determine from the context whether the symbol « refers to
an element of Autp(V), or Autp(A).

It follows from Eqn (1) that

(a’ha™P)o = a’hoa™"
for all h € H. Hence a P(a”0) centralizes H. Therefore \ := a™P(a?0)
lies in A*. Setting h = a”? in Eqn (1) shows a?o = a(aPo)a~!. Thus
a(d) =\ = (aP(aP0))* = a P(aPo) = A
Conjugating by o = (aPo)A~! induces an inner automorphism:
aP(8) = 0% = 5N =T = NXTL (S e A).
In summary, we have proved

Lemma 2. The element a € AutgV satisfying Eqn (1) induces via
conjugation an automorphism of A = Endgy(V'), also called . There
exists A\ € A satisfying

(2a,b,c) aP(afo) =X, a(N) =X, aP(6) = Ao
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for all § € A.

Theorem 3. The representation o1: G — GL(VT) afforded by V1
relative to the F-basis

€0,C15 vy CdTly-- s eooz_iai, eloz_iai, cey ed_loz_iai,

(3) o ega PGP o gl e (P gt

for VT is given by
0 « 0 ho

(4a)  aol i ho' "

a, acl = i , hol =

0 0 « .
aX 0 0 ho

where h € H. Moreover, there is an isomorphism from the general
cyclic algebra (A, a, ) to Endpg(V'1)

p—1 p—1

(A, a,\) = Endga(V1): > bzt = Y D(6;) X
i=0 i=0
where
0 I 0 )
.. a(d)
ba,b) X = ' , D)=
(50.0) R B2
A0 0 aP~1(§)
and 6 € A.

Proof. By Lemma 1, a~%a’: V — Va' is an FH-isomorphism. Hence
ho1 is the p x p block scalar matrix given by Eqn (4b). Similarly, ac
is given by Eqn (4a) as

(,Ua—iai>a B G O S| (Ua‘(l"l)ap_l)a = va(a™Pad’) = val

where the last step follows from Eqn (2a).

We follow [J96] and write R = A[t; a] for the twisted polynomial ring
with the usual addition, and multiplication determined by t§ = «(d)t
for 0 € A. The right ideal (t” — X\)R is two-sided as

ttP — X)) = (=Nt and §(t? — ) = (t# — A)A 710N
by virtue of Equs (2b) and (2¢). The general cyclic algebra (A, o, \)
is defined to be the quotient ring R/(t? — A)R. Since R is a (left)
euclidean domain, the elements of (A, a, A\) may be written uniquely
as Y00 ;2% where = ¢+ (#” — \) R, and multiplication is determined
by the rules 27 = X\ and xd = a(d)x where § € A.



MODULES INDUCED FROM A NORMAL SUBGROUP OF PRIME INDEX 5

The matrices commuting with Hol are precisely the block matrices
(0i,5)o<ij<p Where §; ; € A. To compute Endp;(V 1), we determine the
matrices (J; ;) that commute with ac. If 0 < i < p—1, then comparing
row ¢ — 1 of both sides of (ac1)(d; ;) = (d;;)(acT) shows how to express
0; ; in terms of the ¢;_1 ;. Similarly, row p — 1 shows how to express
dp—1; in terms of &g k. It follows that a matrix (§;;) commuting with
aoT is completely determined once we know the Oth row dy ;. We show
that the Oth row can be arbitrary. The Oth row of Zf:_ol D(6;) X" is
(09,01, .. .,0p—1). This element lies in I' as we show that D(é;), X € I.

To see that D(9) € I', we show that (acT)D(d) = D(6)(acT). The
first product equals

0 Jda 0
(aUT)D(é) - 0 0 ' a_(p—2)6ap—1
aXo 0 0

and the second product is identical if aXd = 6* a). However, this
is true by Eqn (2c¢). To see that X € I, write acT = AX where
A = diag(a,...,a). It follows from Eqn (2b) that A and X commute.
Therefore acT = AX and X commute.

In summary, elements of I' may be written uniquely as Zf;ol D(6;) X"
where §; € A. Since X? = Al and X D(0) = D(a(0))X it follows that
the map >0 ;2% + 32070 D(6;)X" is an isomorphism (A, a, \) — T
as claimed. OJ

A consequence of Eqn (2c) is that o has order p or 1 modulo the
inner automorphisms of A. It follows from the Skolem-Noether theo-
rem [CR90,3.62] that the order of @ modulo inner automorphisms is
precisely the order of the restriction «|Z, where Z = Z(A) is the centre
of A.

4. THE CASE WHEN «|Z HAS ORDER p

In this section we determine the structure of I' := Endpg (V1) in the
case when « induces an automorphism of order p on the field Z(A).

Of primary interest to us is Part (a) of the following classical theo-
rem. Although this result can be deduced from [J96, Theorem 1.1.22]
and the fact that t» — X is a ‘two-sided maximal’ element of A[t;a],
we prefer to give an elementary proof which generalizes [L.91, Theo-
rem 14.6].

Theorem 4. Let I' be the general cyclic algebra (A, a, N) where X # 0
and a(X) = \. Suppose that «|Z(A) has order p, and fixed subfield Zy.
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Then

(a) T is a simple Zy-algebra,

(b) Cr(A) = Z(A),

(¢) Z(T") = Zy, and

(d) T : Zy| = (pDeg(A))? where |A : Z(A)| = Deg(A)?.

Proof. The following proof does not assume that p is prime. Let
v =y + -+ 7,2 be a nonzero element of an ideal I of I, where
0<i; < <i.<p,v €A, and r is chosen minimal. By minimality,
each ~; is nonzero. To prove Part (a) it suffices to prove that r = 1.
Then [ = I" as 12" € I is a unit because ; and z are both units.

Assume now that r > 1. Then
T

(ma™ () )y =78 =D (ma (9)1 ' — wa* (9)) 2™
k=2

lies in I for each 6 € A. By the minimality of 7, each coefficient of z
is zero. This implies that o™ equals o modulo inner automorphisms
for k =2,...,r. This contradiction proves Part (a).

The proofs of Parts (b) and (c) are straightforward, so we shall omit
their proofs. Part (d) follows from |I' : A| = |Z(A) : Zy| = p, and
|A 2 Z(A)] = Deg(A)? is a square. O

Before proceeding to Theorem 5, we define the left- and right-twisted
powers, =% and =, where 1 € A and i € Z. These expressions are like
norms, indeed Jacobson [J96] uses the notation N;(u) to suggest this.
These “norms”, however, are not multiplicative in general. Consider
the twisted polynomial ring A[t; o] and define

(ut)" = pt', and  (tp)" =t'p'"
for p € A and i € Z. Tt follows from the power laws (ut)*(ut)? = (ut)™
and ((ut)’)? = (ut)¥ that
M:liai(,u:lj> — ,u:'(H'j), and ,ujiozi(,uji) . 'Oéi(j_l)(,uji) _ Iuj(ij)
fori,j € Z. Similar laws hold for right-twisted powers. The left-twisted
powers of nonnegative integers can be defined by the recurrence relation

6) w®=1, and p? =Pl () = pa(p) fori >0,

and negative powers can be defined by p=2=" = of(u=%) 1.
It is important in the sequel whether or not A=! has a left-twisted
pth root.

Theorem 5. Let V' be a G-stable irreducible FH-module where H 1 G
and |G/H| = p is prime. Let a and X\ be as in Lemma 2. Suppose that
alZ has order p where Z = Z(A) and A = Endgg (V).



MODULES INDUCED FROM A NORMAL SUBGROUP OF PRIME INDEX 7

(a) If the equation =P = X\~1 has no solution for p € A*, then V1 is
irreducible, and Endpg (V1) is isomorphic to the general cyclic algebra
(A, a, \) as per Theorem 3.

(b) If p € A* satisfies p™? = A7, then V1 = Uluo) + -+ + U(pp-1)
where

p—1
U(uj):VZufZa_Za’ (j=0,1,....,p—1)
i=0

are isomorphic irreducible submodules satisfying U(p;)l = V, and
where ufp = A\"L. Moreover, if p: G — GL(U(u)) is the representation

afforded by U(u) relative to the basis e, . . ., e, ; where

p—1
e;:ejz,ujia_iai (1=0,1,...,d—1),
i=0

then ap = ap™, hp = ho for h € H, and
Endpg(U(p)) = Calop™) = {0 € A | §* ="}

Proof. By Theorem 4(a), (A, a, ) is a simple ring. In Part(a) more
is true: (A,a,A) is a division ring by [J96, Theorem 1.3.16]. By
Theorem 3, (A, a, A) is isomorphic to Endgpg (V1) and so we have proved
that V7 is irreducible as desired.

Consider Part (b). Let s = ut be an element of the twisted polyno-
mial ring A[t; o], then s* = (ut)' = p~t" and

56 = ptd = (pa(d)pt)ut = pa()p's.
Therefore the map Aft; a] — Als;ap™']: S0 6t — 32070 6, (u2) s’
is an isomorphism. We are abusing notation here by identifying au ="
in Autg(V) with 6 — 6% in Autg(A). If y = pz, then
Y = (px)’ = pPA=A"A=1.

By taking quotients we get an isomorphism (A, o, \) — (A, au™t,1)

given by
p—1 p—1
Zéixi . Z(Si(ﬂji>—1yi
i=0 i=0

where z =t + (t* — \) and y = s + (s — 1).

AsyP =1 = (y— P+ - +y+1), and Afs,ap™"] is right
euclidean it follows that (y — 1)(A, ap™t, 1) is a maximal right ideal of
(A, au™t,1). Now y — 1 corresponds to ux — 1 which corresponds to
D(p)X — 1 whose kernel gives rise to the irreducible submodule U (1)
of V71 in the statement of Part(b). We shall reprove this, and prove a
little more, using a more elementary argument.
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Let U be a submodule of VT satisfying U] = V. Let ¢: V — V7
be an FH-homomorphism such that V¢ = U|. Let m;: V] — Va'
be the FH-epimorphism given by (37~ v;a~‘a’)m; = v;a~*a’. Then
§; = ¢ma"'al is an FH-homomorphism V' — V, or an element of A.
Since my + m + - - - 4+ mp—; is the identity map 1: VT — VT, it follows
that

¢ = (bl = ¢(W0 +m+ -+ 7Tp_1) = Z(Sioﬁiai.
i=0
We now view ¢ as a map V' — U and note that U = Ua. Then
ata:V — Va, a'¢a: Va — Ua and ¢~': Ua — V are each FH-
isomorphisms. Hence their composite, (a™ta)(a " ¢a)¢p™! is an iso-
morphism V' — V., denoted p~! where p € A*. Rearranging gives
¢a = ap~'¢. Therefore,

vgba—( Zéa a)a—vau 125@ a'

for all v € V. The expression (vd;a ‘a’)a equals

’U(;Z'OéOé_(H—l)aH_l — UO[(SZ-QOK_(H_I)CLH—I — UO(M_léi+1Oé_(2+1)CLZ+1.

Setting ¢ = p — 1 gives
(v8,_1a~ P VgP~1)g = vadt o Pa? = vadt A = vap” 5.

Therefore 0f = p~'d;4y for i = 0,...,p — 2 and 63 |\ = p~'d. If
09 = 0, then each §; = 0 and ¢ = 0, a contradiction. Thus d; # 0 and
as V&, '¢ = U, we may assume that o = 1. It follows from Eqn (6)
that §; = =" is the solution to the recurrence relation: 6, = 1 and
0 = 0;41 for i > 0. Furthermore pdg_; = A~! implies that g = A~".
In summary, any submodule U of V1 satisfying U| = V equals U(u)
for some p satisfying p=? = A\~!. Furthermore, by retracing the above
argument, if 77 = A7!, then U(u) is an irreducible submodule of V']
satisfying U| =V

As Endpg(V7) is a simple ring, VT is a direct sum of isomorphic
simple submodules. Therefore, VT = U(po) +- - -+ U(pp—1) as desired.
It follows from Lemma 1 that the representation p: G — GL(V)
satisfies ap = ap~! and hp = ho for h € H. Consequently, the matrices
commuting with Gp equal the elements of A centralizing ap. Hence
Endpq(U(p)) = Ca(ap™?) as claimed. O

5. THE CASE WHEN « IS INNER

In this section assume that a|Z(A) has order 1, or equivalently by the
Skolem-Noether theorem, that « is inner. Fix e € A* such that « is the
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inner automorphism «(d) = e~'de. Clearly a(e) = ¢ and by Eqn (2c¢)
e7Poe? = aP(8) = AOA™L. Therefore, n = ePA € Z(A). If y = ez, then
yP = e PaP = P\ =n and yd = exd = eb6°x = dex = dy. Hence

(8) (A a, \) — 1,m): Zéa: HZ(SS y'

is an isomorphism. Thus we may untwist Endm(VT).

Theorem 6. Let V be a G-stable irreducible FH-module where H <G
and |G/H| = p is prime. Suppose that o induces the inner auto-
morphism «(0) = 6% of the division algebra A = FEndpy (V). Then
n = ePX € Z* where Z = Z(A). Suppose that s? —n = v(s)u(s)
where p(s) = > s and v(s) = Y 2_ " vis', are monic polynomials
in A[s]. Then W, = Y10tV Y 20 ve o~ s o submodule of
V1. Let p: G — GL(W,,) be the representation afforded by W, relative
to the basis

(9)  €hrrCly g (X)L e (e X)L e (e X))

where
p—m p—m
€ = €y E viedaTla’ = ey, E vi(eX),
Jj=0 Jj=0

and X is given by Eqn (5a). Then

0 1 0
10 ap = oe ! :
(10) p 0 0 .
—Mo —H1 —Hm—1

and hp = diag(ho, . .., ho) where h € H. Moreover,

Endge (W, {Za (ap)* | o GA}.

If u(s) € Z[s|, then Endpa(W,) = Als]/p(s)Als] = A ®z K where
~ Z1s]/u(s)Zs].

Proof. Arguing as in Theorem 5, we have a series of right ideals:

v(s)Als] € Als, v(y)(A, 1,n) € (A, 1n), viex)(A a, ) € (A a,A),

and > "7, D(;)(eX)'T is a right ideal of I' = Endpg(V'1). This right
ideal corresponds to the submodule V1" D(v;)(eX)T of V1. It
follows from Eqn (5a) and (¢ X)? —n = 0 that the minimum polynomial
of eX equals s” — 1.
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Let v' = vv(eX) where v € V. Then
(11) V(eX) = vv(eX)pu(EX) =v((eX)P —n) =v0=0.
This proves that (9) is a basis for
m—1 n
W,=imv(eX) =kerv(eX) = Z VY pettia ()it
0

1= J:

It follows from Lemma 1 that hp = diag(ho, ..., ho) is a block scalar
matrix (h € H). Since a = aX,

(12) V'(eX)a=v(eX)aX = vas (X))

It follows from Eqns (11) and (12) that the matrix for ap is correct.
It is now a simple matter to show that {Z?:ol di(ap)' | 6; € A} is
contained in Endpg(W),). A familiar calculation shows that an element
of Endpg(W),,) is determined by the entries in its top row. As this may
be arbitrary, we have found all the elements of Endgg(V),). O

It follows from Theorem 6 that a necessary condition for W, to be
irreducible is that pu(s) is irreducible in A[s]. Lemma 7 describes an
important case when Endge(W),) is a division ring, and hence W, is
irreducible. The following proof follows Prof. Deitmar’s suggestion
[D02].

Lemma 7. Let A be a division algebra with center F, and let u(s) € Fs]
be irreducible of prime degree. Suppose that no § € A satisfies pu(5) = 0.
Then the quotient ring A[s]/u(s)Als] is a division algebra.

Proof. Let K = TF[s]/u(s)F[s]. Then K is a field and |K : F| = deg u(s)
is prime. Clearly p(s)A[s] is a two-sided ideal of Als], and A[s]/u(s)Als]
is isomorphic to Ax = A®rK. By [L91, 15.1(3)], Ak is a central simple
K-algebra, and hence is isomorphic to M, (D) for some division algebra
D over F. The degree of D and the Schur index of Ak are defined as
follows

Deg(D) = (dimg D)*? and Ind(Ax) = Deg(D).

By [P82, Prop. 13.4], Ind(Ak) divides Ind(A), and Ind(A) divides
|K : F| Ind(Ak). Thus either

Ind(Ag) = Ind(A) = Deg(A) = Deg(Dx)

and Ak is a division algebra by [P82, Prop. 13.4(ii)], or Ind(A) equals
IK : F| Ind(Ak). If the second case occurred, then by [P82, Cor. 13.4],
K is isomorphic to a subfield of A, and so p(s) has aroot in A, contrary
to our hypothesis. O
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If n ¢ AP, then n ¢ ZP and so s? — n is irreducible in Z[s], and
it follows from Lemma 7 that VT = Wy _, is irreducible. Note that
Endpg(V1) = A ® Z[n'/?] is a division algebra.

6. THE CASE WHEN « IS INNER AND &P =17

In this section we shall assume that £ € A satisfies €& —n = 0. Let
y=crand z = {1y = £ tex. Tt is useful to consider the isomorphisms
(A o, A) — (A, 1,n7) — (A, 1,1) defined by z +— 7'y and y — &2.
Note y and z are central in (A, 1,7) and (A, 1,1) respectively, and
y?P =nand 2f = 1.

Theorem 8. Let V be a G-stable irreducible FH-module where H <G
and |G/H| = p is prime. Suppose that a induces the inner automor-
phism «(0) = ¢ of the division algebra A = Endpg (V). Set n = P\
and let £, w € A satisfy &P =n and wP = 1. Then £ € Z = Z(A).
(a) If char(F) # p and w # 1, then V' is an internal direct sum

VI =U()+U(w)+---FUEP)

where
p—1
U(éw?) = VZ(fwj)_ieia_iai
i=0

is irreducible, and U(éw) = U(EW') if and only if w and W' are con-
gugate in A. If p(s) is an irreducible factor of sP —n in Z[s|, then
W, defined in Theorem 6 is a Wedderburn component of V71, and
W, =U()+ -+ U(6,) where 0y,...,0, are the roots of u(s) in
the field Z(§,w). In addition, the representation py: G — GL(U(0))
afforded by U(0) relative to the basis e, ..., €}, | where

p—1
e = e, Z O 'e'a"a’
i=0
satisfies
(12a,b) apg = ac~'0 and  hpg = ho

for h € H, and Endps(U(0)) = Ca(0).
(b) If char(F) = p, then w = 1 and V7 is uniserial with unique
composition series {0} =Wy C Wy C --- C W, = V1 where

k p—i . .
—1 . o
Wy = E VE <Z+‘; )f_Jajoz_’a].
i=1  j=0

Moreover, Wy_1 /W, 2 U(E) for k=1,...,p and Endpe(U(£)) = A.
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Proof. Since 26 = 0z, we see that (7 'ex)d = 6(£'ex). This implies
that 10 =061 and so € € Z.
Case (a): Now ({w)P = &PwP = 1), hence

=0

(13) P -n=y (W) = (y— W) (i(sw—l—@i) .

Therefore V1 3770 (€w)P~ (e X)'T is a submodule of V1 where X is
given by Eqn (5a). We show directly that U({w) is a submodule of V1.
This follows from

(v(éw) "' "a")a = voz(ofl(&u)_igia)a—(iﬂ)aiﬂ
(14) — vae~ ew(Ew) D (D) it
and setting i = p — 1 in the right-hand side of Eqn (14) gives
vae w(Ew) PePaPaP = vae  Ewn TP = vae T Hw.

As U(éw)] =V, we see that U(§w) is an irreducible FG-submodule of
V1. Setting 6 = w establishes the truth of Eqns (12a,b).

We may calculate Hom(U ({w), U(&w')) directly by finding all ¢ in
Endg(V') that intertwine pg,, and pg,s. As ¢ intertwines hpg,, and hpg,,
it follows that 0 commutes with Ho, and hence § € A. Also

§(ae™Hw) = (ae™HW')d

S0 0% 'fw = £w'S. Since £ € Z* and §°° ' = §, this amounts to
dw = w'd. Setting i = j shows that Endpg(U(fw)) = Ca(w).

The Galois group Gal(Z(w) : Z) is cyclic of order dividing p—1. Also
w and ' are conjugate in Gal(Z(w) : Z) if and only if they share the
same minimal polynomial over Z. The latter holds by Dixon’s Theorem
[L91, 16.8] if and only if w and ' are conjugate in A. Note that w
and w’ share the same minimal polynomial over Z precisely when &w
and {w’ share the same minimal polynomial. This proves that W, is a
Wedderburn component of V7.

Case (b): Suppose now that char(F) = p. Then w = 1 and Eqn (13)

becomes y” —n = (y — &7 = (y — &) (X0 (77 (=P 7y"). As
T = Endpe(V1]) 2 (A, a,\) 2 (A, 1,7) 2 (A, 1,1) = Al2] /(2 — 1)PAl]

has a unique composition series, so too does V1. By noting that
z = ¢ tex and D(E7te) = £7te, we see that W; = VT(§71eX — 1)P~ T
defines the unique composition series for V1 where X is given by
Eqn (5a).

Let R be the diagonal matrix diag(1,£ e, ..., (71e)P7!), and let S

be the matrix whose (7, j)th block is the binomial coefficient (;) where
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0 <4,j <p. A direct calculation verifies that R((7'eX )R~ = C and
S~ 1C'S J where

01 0 1 1
C = and J =
0 0 1 11
10 0 1
Therefore ¢ 'eX —1=T"'(J —1)T where T = S™'R, and hence

We=VI('eX 1P =V T (] -1)P*T =V(J - 1) *T.
It is easily seen that im(J — 1)P~% = ker(J — 1)* is the subspace
(0,...,0,V,..., V) where the first V' is in column p — k. The (4, j)th
entry of T = S7'R is (—1)" (?)(f‘ls)j. The last row of T' gives

VZ P 1”( i 1)(5_15)j0z_jaj.

More generally, the last k rows of T give

ZVZ - 2+J( ] Z) (€ 'eYaTdl,

Since p —i — £ = —(i + f)_ in a field (such as F) of characteristic p, we
see that (”;’) = (-1) (”;._1) and the formula for W, simplifies to

k p—i . .
—1 oo o
We=3 vy ( - )ga
i=1  j=0

Setting k& = 1 shows W; = U(§). A direct calculation shows that
Wi_1/W; = U(£). We showed in Part (a) that Endpg(U(€)) equals
Ca(§) = A. O

In Case (a), Ca(éw) equals A precisely when w € Z. If A is the
rational quaternions, and w is a primitive cube root of unity, then
Ca(w) equals Q(w). There are infinitely many primitive cube roots of 1
in this case, and they form a conjugacy class of A by Dixon’s Theorem
(as they all satisfy the irreducible polynomial s>+ s+ 1 over Q). Thus
isomorphism of the submodules U(£w) is governed by conjugacy in A,
and not conjugacy in Gal(Q(w) : Q).

Finally, it remains to generalize Theorem 8(a) to allow for the pos-
sibility that A may not contain a primitive pth root of 1.

Theorem 9. Let V be a G-stable irreducible FH-module where H < G
and |G/H| = p is prime. Suppose that ,§ € A satisfy a(d) = 0°
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(0 € A) and & —n = 0 where n = e’ € Z = Z(A). In addition,
suppose that char(F) # p. Then V1 is an internal direct sum

V=W, o W,

where sP —n = p1(s) - - - () is a factorization into monic irreducibles
over Z, and where W, defined in Theorem 6. If p(s) is a monic
irreducible factor of s* —n, and u(s) = v1(s) - - -vn(s) where the v(s)
are monic and irreducible in A[s|, then W, is a Wedderburn component
of V1, and W, = W™ where W, is an irreducible FG-module and
Endpg(W,,) is given in Theorem 6. In addition,

Endpe(W,,) = B/vn(s)Als]

where B = {0(s) € Als] | 0(s)vn(s) € vn(s)A[s]} is the idealizer of the
right ideal vy, (s)A[s].

Proof. Since char(F) # p, the monic polynomials p(s),..., u.(s) are
distinct and pairwise coprime in Z[s]. From this it follows that V1
equals W,, +---+ W, . By Theorem 6, Endpe(W,) = Ag where
Ag = Als]/u(s)Als] 2 A ®z K, and K is the field Z[s]/u(s)Z][s].
By [L91, 15.1(3)], Ak is a simple ring. Therefore u(s)A[s] is a two-
sided maximal ideal of A[s], and so pu(s) is called a two-sided maximal
element of Als]. By [J96, Theorem 1.2.19(b)], Ax = M, (D) where D
is the division ring B/v,(s)Als]. Moreover, Z(Ak) = Z(M,(D)) so
K = Z(D). Thus W, = W2" where W,, is an irreducible submodule
of V1 and Endpg(W,,,) = D. In addition, vy, ..., v, are similar [J96,
Def. 1.2.7], and W, ,..., W, are isomorphic.

If u(s), 1/(s) are distinct monic irreducible factors of s? —n in Z[s]
and v(s),V(s) in A[s] are monic irreducible factors of p(s) and p'(s)
respectively, then it follows from [J96, Def. 1.2.7] that v(s) and v/(s)
are not similar. This means that an irreducible summand of W, is
not isomorphic to an irreducible summand of W,. Hence the W, are
Wedderburn components as claimed. ([l

ACKNOWLEDGMENT

[ am very grateful to Prof. A.D.H. Deitmar for providing a proof [D02]
of Lemma 7 in the case when s —n has no root in A. I would also like
to thank the referee for his/her helpful suggestions.

REFERENCES

[CR90] C.W. Curtis and I. Reiner, Methods of Representation Theory:
with Applications to Finite Groups and Orders, Vol. 1, Classic
Library Edn, John Wiley and Sons, 1990.



MODULES INDUCED FROM A NORMAL SUBGROUP OF PRIME INDEX 15

[D02] A.D.H. Deitmar, sci.math.research, September 6, 2002.
[GK96] S.P.Glasby and L.G.Kovdcs, Irreducible modules and normal
subgroups of prime index, Comm. Algebra 24 (1996), no. 4,
1529-1546. (MR 97a:20012)

[ILO0] G. Ivanyos and K. Lux, Treating the exceptional cases of the
MeatAxe, Experiment. Math. 9 (2000), no. 3, 373-381. (MR
2001j:16067)

[HR94] D.F.Holt and S. Rees, Testing modules for irreducibility, J. Aus-
tral. Math. Soc. Ser. A 57 (1994), no. 1, 1-16. (MR 95e:20023)

[J96] N. Jacobson, Finite-Dimensional Division Algebras over Fields,
Springer-Verlag, 1996.

[L91] T.Y.Lam, A First Course in Noncommutative Rings, Graduate
Texts in Mathematics 131, Springer-Verlag, 1991.

[INP95] P.M. Neumann and C.E.Praeger, Cyclic matrices over finite
fields, J. London Math. Soc. 52 (1995), no. 2, 263-284.
(MR 96j:15017)

[P84] R.A.Parker, The computer calculation of modular characters
(the meat-axe), Computational group theory (Durham, 1982),
267-274, Academic Press, London, 1984. (MR 84k:20041)

[P82] R.S. Pierce, Associative Algebras, Graduate Texts in Mathe-
matics 88, Springer-Verlag, 1982.

S.P. GLASBY

DEPARTMENT OF MATHEMATICS
CENTRAL WASHINGTON UNIVERSITY
WA 98926-7424, USA
GlasbyS@cwu.edu



