Subgroups of the upper-triangular matrix group with maximal derived length and a minimal number of generators

S.P. GLASBY

ABSTRACT. The group $U_n(\mathbb{F})$ of all $n \times n$ unipotent upper-triangular matrices over \mathbb{F} has derived length $d := \lceil \log_2(n) \rceil$, equivalently $2^{d-1} < n \leq 2^d$. We prove that $U_n(\mathbb{F})$ has a 3-generated subgroup of derived length d, and it has a 2-generated subgroup of derived length d if and only if $\frac{21}{32}2^d < n \leq 2^d$.

1. INTRODUCTION

Let \mathbb{F} be a field and let $U_n(\mathbb{F})$ (or U_n) denote the group of $n \times n$ upper-triangular matrices over \mathbb{F} with 1's on the main diagonal and 0's below. If $2^{d-1} < n \leq 2^d$, then U_n has derived length d and has a subgroup generated by n-1 elements which also has derived length d (see [3]). We show in Theorem 2 that U_n has a 3-generated subgroup with derived length d. In Theorem 6 we show that U_n has a 2-generated subgroup of derived length dif and only if $\frac{21}{32}2^d < n \leq 2^d$. It follows that the proportion, $\pi(N)$, of $n \leq N$ such that U_n has a 2-generated subgroup of maximal derived length satisfies $\frac{11}{21} < \pi(N) \leq 1$, $\liminf \pi(N) = \frac{11}{21}$ and $\limsup \pi(N) = \frac{11}{16}$. Theorems 2 and 6 are constructive in the sense that the generating matrices are explicitly given by recursive formulas.

We shall now introduce some notation and state some well-known properties of U_n (see [3]). The kth term of the lower central series for U_n , denoted $\gamma_k(U_n)$, comprises the matrices $(a_{i,j}) \in U_n$ with $a_{i,j} = 0$ if 0 < j - i < k. Furthermore, the kth term in the derived series for U_n is $U_n^{(k)} = \gamma_{2^k}(U_n)$.

In the sequel we shall assume that $d = \lceil \log_2(n) \rceil$ and consider subgroups G of U_n where $G^{(d-1)}$ is not trivial. Let $1 \leq i < j \leq n$ and let $X_{i,j} \in U_n$ be the matrix obtained by adding row j of the identity matrix, I, to row i (so its (i, j)th entry is 1). Then

$$[X_{i,j}, X_{k,\ell}] = X_{i,j}^{-1} X_{k,\ell}^{-1} X_{i,j} X_{k,\ell}$$

equals I if j < k, and equals $X_{i,\ell}$ if j = k. In order to show that U_n has derived length d for all n satisfying $2^{d-1} < n \leq 2^d$, it suffices to show that $\langle X_{1,2}, X_{2,3}, \ldots, X_{n-1,n} \rangle$ has derived length d when $n = 2^{d-1} + 1$. The latter can be proved using induction on d based

Date: 8 August 1997.

on the following reasoning

$$\begin{aligned} X_{1,9} &= [X_{1,5}, X_{5,9}] \\ &= [[X_{1,3}, X_{3,5}], [X_{5,7}, X_{7,9}]] \\ &= [[[X_{1,2}, X_{2,3}], [X_{3,4}, X_{4,5}]], [[X_{5,6}, X_{6,7}], [X_{7,8}, X_{8,9}]]]. \end{aligned}$$

At the heart of this proof is a binary tree with d layers and $2^d - 1$ vertices. The vertices at layer k are the elements $X_{1+(i-1)2^{k-1},1+i2^{k-1}}$ of $U_n^{(k-1)}$. If $j = 1 + (i-1)2^{k-1}$, then the vertices $X_{j,j+2^{k-1}}$ and $X_{j+2^{k-1},j+2^k}$ of layer k are joined to $X_{j,j+2^k}$ on the next layer.

2. 3-GENERATED SUBGROUPS

The idea behind the proof of Theorem 2 is to "re-cycle" vertices of the above binary tree. For example, the four matrices $X_{1,2}, X_{2,3}, X_{3,4}, X_{4,5}$ are not needed to show that $X_{1,5} \in U_5^{(2)}$: three matrices suffice as

$$[[X_{1,2}, X_{2,3}X_{3,4}], [X_{2,3}X_{3,4}, X_{4,5}]] = [X_{1,3}X_{1,4}, X_{3,5}] = X_{1,5}.$$

The graph at the heart of the proof of Theorem 2 has fewer vertices than the complete bipartite binary tree with $2^d - 1$ vertices. It has d layers with 3 vertices per layer, where the vertices of layer k correspond to elements of $G^{(k-1)}$. Let A, B, C be the matrices corresponding to the vertices of layer k. Then the commutators [B, C], [C, A], [A, B]correspond to the vertices of layer k + 1. Thus the edges between layers k and k + 1form a bipartite graph K, and the full graph is obtained by joining d - 1 copies of K end-to-end. Our objective is to inductively construct three layer 1 matrices, so that at least one of the layer d matrices is non-trivial.

Let F be the free group $\langle x_1, x_2, x_3 | \rangle$ of rank 3. The following lemma was much harder to conceive than to prove.

Lemma 1. Let d be a positive integer, and let $n = 2^{d-1} + 1$. Then there exist matrices $A_n, B_n, C_n \in U_n$ and a word $w_n(x_1, x_2, x_3) \in F^{(d-1)}$ such that

(1)
$$w_n(A_n, B_n, C_n) = X_{1,n}, w_n(B_n, C_n, A_n) = I, and w_n(C_n, A_n, B_n) = I.$$

Proof. The proof uses induction on d. When d = 1, take $w_2(x_1, x_2, x_3) = x_1$ and $A_2 = X_{1,2}$, $B_2 = C_2 = I$. (More generally, if $r^3 + s^3 + t^3 - 3rst \neq 0$ in \mathbb{F} where $r, s, t \in \mathbb{Z}$, then we may take $w_2 = x_1^r x_2^s x_3^t$ and find $A_2, B_2, C_2 \in U_2$ such that (1) holds.) Suppose that $A_n, B_n, C_n \in U_n$ and $w_n \in F^{(d-1)}$ satisfy (1). We shall construct appropriate $A_{2n-1}, B_{2n-1}, C_{2n-1}$ and w_{2n-1} . Now $n = 2^{d-1} + 1$ and $2n - 1 = 2^d + 1$. There is a surjective homomorphism

$$\pi: U_{2n-1} \to U_n \times U_n$$
 given by $\pi(A) = (\lambda(A), \rho(A)),$

where $\lambda(A)$ is the upper-left $n \times n$ submatrix of A, and $\rho(A)$ is the lower-right $n \times n$ submatrix of A. Note that $\lambda(A)$ and $\rho(A)$ overlap at the (n, n)th entry of A, which is a 1.

Choose $A_{2n-1}, B_{2n-1}, C_{2n-1} \in U_{2n-1}$ such that

$$\pi(A_{2n-1}) = (A_n, B_n), \qquad \pi(B_{2n-1}) = (B_n, C_n), \qquad \pi(C_{2n-1}) = (C_n, A_n)$$

Clearly A_{2n-1} , B_{2n-1} and C_{2n-1} are not uniquely defined. (A different choice may be obtained by multiplying by an element of ker $(\pi) \cong \mathbb{F}^{(n-1)^2}$.) Define w_{2n-1} by

$$w_{2n-1}(x_1, x_2, x_3) = [w_n(x_1, x_2, x_3), w_n(x_3, x_1, x_2)].$$

Clearly, $w_{2n-1} \in F^{(d)}$.

Consider $w_{2n-1}(A_{2n-1}, B_{2n-1}, C_{2n-1})$. Now

$$\pi(w_n(A_{2n-1}, B_{2n-1}, C_{2n-1})) = w_n(\pi(A_{2n-1}), \pi(B_{2n-1}), \pi(C_{2n-1}))$$

= $(w_n(A_n, B_n, C_n), w_n(B_n, C_n, A_n))$
= $(X_{1,n}, I).$

Similarly,

$$\pi(w_n(B_{2n-1}, C_{2n-1}, A_{2n-1})) = (I, I) \text{ and } \\ \pi(w_n(C_{2n-1}, A_{2n-1}, B_{2n-1})) = (I, X_{1,n}).$$

Now $\pi(X_{1,n}) = (X_{1,n}, I)$ and $\pi(X_{n,2n-1}) = (I, X_{1,n})$. (Here we can tell from the context whether $X_{1,n}$ lies in U_{2n-1} or U_n .) Therefore

$$w_n(A_{2n-1}, B_{2n-1}, C_{2n-1}) = X_{1,n}Z_1,$$

$$w_n(B_{2n-1}, C_{2n-1}, A_{2n-1}) = Z_2, \text{ and }$$

$$w_n(C_{2n-1}, A_{2n-1}, B_{2n-1}) = X_{n,2n-1}Z_3$$

where $Z_1, Z_2, Z_3 \in \ker(\pi)$. Since $\ker(\pi)$ is abelian, and is centralized by both $X_{1,n}$ and $X_{n,2n-1}$, it follows that

$$w_{2n-1}(A_{2n-1}, B_{2n-1}, C_{2n-1}) = [X_{1,n}Z_1, X_{n,2n-1}Z_3]$$

= $[X_{1,n}, X_{n,2n-1}] = X_{1,2n-1},$
 $w_{2n-1}(B_{2n-1}, C_{2n-1}, A_{2n-1}) = [Z_2, X_{1,n}Z_1] = I,$
 $w_{2n-1}(C_{2n-1}, A_{2n-1}, B_{2n-1}) = [X_{n,2n-1}Z_3, Z_2] = I.$

This completes the induction, and the proof.

Recall the observation that $U_n(\mathbb{F})$ has derived length $d := \lceil \log_2(n) \rceil$, and the subgroup $\langle X_{1,2}, X_{2,3}, \ldots, X_{n-1,n} \rangle$ has n-1 generators and derived length d.

Theorem 2. The group $U_n(\mathbb{F})$ of $n \times n$ upper-triangular matrices over a field \mathbb{F} with all eigenvalues 1, has a 3-generated subgroup whose derived length is $d := \lceil \log_2(n) \rceil$. Furthermore, if $n \leq \frac{5}{8}2^d$ then $U_n(\mathbb{F})$ has no 2-generated subgroup of derived length d.

Proof. Set $m = 2^{d-1} + 1$. Then both U_m and U_n have derived length d. By Lemma 1, U_m has a 3-generated subgroup with derived length d, and hence so too does U_n , as U_n has a subgroup isomorphic to U_m .

If d < 3, then there are no integers in the range $\frac{1}{2}2^d < n \leq \frac{5}{8}2^d$. Suppose $d \ge 3$ and $G = \langle A, B \rangle$ is a 2-generated subgroup of U_n where $\frac{1}{2}2^d < n \leq \frac{5}{8}2^d$. Then

$$\gamma_2(G)/\gamma_3(G) = \langle [A, B]\gamma_3(G) \rangle$$

is cyclic, and therefore

$$G^{(2)} = [\gamma_2(G), \gamma_2(G)] = [\gamma_2(G), \gamma_3(G)] \subseteq \gamma_5(G).$$

A simple induction shows $G^{(d-1)} \subseteq \gamma_{5 \cdot 2^{d-3}}(G)$ for $d \ge 3$. Since $n \le 5 \cdot 2^{d-3}$, we have

$$G^{(d-1)} \subseteq \gamma_{5 \cdot 2^{d-3}}(G) \subseteq \gamma_n(G) \subseteq \gamma_n(U_n) = \{I\}$$

Therefore G has derived length less than d.

In the above proof, there were choices for A_2, B_2, C_2 and for the subsequent generators A_n, B_n, C_n where $n = 2^{d-1} + 1$. However, once A_2, B_2 and C_2 were specified, the (i, i+1) entries of A_n, B_n, C_n (d > 1) were determined, but the (i, j) entries with j - i > 1 could be arbitrary. It should not surprise the reader that different choices for A_2, B_2 and C_2 can yield different subgroups $\langle A_n, B_n, C_n \rangle$.

We shall give an example of a 2-generated group $G = \langle A, B \rangle$ of U_n that shows that both the derived length and the order can depend on \mathbb{F} . Let G be the subgroup $\langle A, B \rangle$ of U_6 where $A = X_{1,2}X_{5,6}$ and $B = X_{2,3}X_{3,4}^{-1}X_{4,5}$, and suppose that $\operatorname{char}(\mathbb{F}) = p$ is prime. It follows from $[[B, A], B], [B, A]] = X_{1,6}^2$ and [[B, A], A], [B, A]] = I that G is metabelian if p = 2, and has derived length 3 if p > 2. Furthermore, $|G| = p^7$ if p = 2, 3 and $|G| = p^6$ if p > 3. In the latter case G has maximal class (see [1, p. 61]).

3. 2-generated subgroups

Suppose that $\frac{5}{8}2^d < n \leq 2^d$. It is natural to ask whether $U_n(\mathbb{F})$ has a 2-generated subgroup of derived length d. If $U_m(\mathbb{F})$ has a 2-generated subgroup of derived length d, then so too does $U_n(\mathbb{F})$ all n satisfying $m \leq n \leq 2^d$. In this section we show that the smallest value of m for which U_m has a 2-generated subgroup of derived length d is $m = \lfloor \frac{21}{32}2^d \rfloor + 1$. This is clearly the case if $0 \leq d < 3$. Henceforth assume that $d \geq 3$.

Let $F = \langle a, b | \rangle$ denote a free group of rank 2. Then $\gamma_r(F)/\gamma_{r+1}(F)$ is an abelian group, for each positive integer r, which is freely generated by the basic commutators of weight k(see [2]). Thus a typical element of $\gamma_2(F)/\gamma_4(F)$ has the form $[b, a]^i[b, a, a]^j[b, a, b]^k\gamma_4(F)$, where [b, a, a] and [b, a, b] denote left-normed commutators, i.e. [[b, a], a] and [[b, a], b]respectively. We shall need three lemmas in the sequel. Lemmas 3 and 4 are standard so we omit their proofs.

Lemma 3. Let $x, x' \in \gamma_r(F)$ and $y, y' \in \gamma_s(F)$ where $x \equiv x' \mod \gamma_{r+1}(F)$ and $y \equiv y' \mod \gamma_{s+1}(F)$. Then $[x, y] \equiv [x', y'] \mod \gamma_{r+s+1}(F)$.

Applying Lemma 3 to $[[b, a]^i[b, a, a]^j[b, a, b]^k, [b, a]^\ell]$ shows that

$$[[b, a, a], [b, a]]\gamma_6(F)$$
 and $[[b, a, b], [b, a]]\gamma_6(F)$

generate $F^{(2)}\gamma_6(F)/\gamma_6(F)$.

Lemma 4. Let $T_{r,n}(\tau_1, \ldots, \tau_{n-r})$ denote a coset of $\gamma_{r+1}(U_n)$ comprising matrices $(t_{i,j})$ satisfying $t_{i,j} = 0$ if $1 \leq j - i < r$, $t_{i,j} = \tau_i$ if j - i = r, and $t_{i,j}$ arbitrary if j - i > r. Then $[T_{r,n}(\alpha_1, \ldots, \alpha_{n-r}), T_{s,n}(\beta_1, \ldots, \beta_{n-s})]$ is contained in

$$T_{r+s,n}(\alpha_1\beta_{1+r}-\alpha_{1+s}\beta_1,\ldots,\alpha_{n-r-s}\beta_{n-s}-\alpha_{n-r}\beta_{n-r-s}).$$

How might we go about finding matrices $A, B \in U_n$ such that $\langle A, B \rangle$ has derived length d? Motivated by the previous section we suspect that the (i, i+1) entries of A and B are important. Let $A \in T_{1,n}(\alpha_1, \ldots, \alpha_{n-1})$ and $B \in T_{1,n}(\beta_1, \ldots, \beta_{n-1})$ where the α_i and the β_i are regarded as variables. An evaluation homomorphism from the polynomial ring

$$P = \mathbb{Z}[\alpha_1, \dots, \alpha_{n-1}, \beta_1, \dots, \beta_{n-1}]$$

to \mathbb{F} gives rise to a group homomorphism $\phi : U_n(P) \to U_n(\mathbb{F})$. We shall find a word $c_{n-1}(a,b) \in \gamma_{n-1}(F) \cap F^{(d-1)}$ and values for the α_i and β_j in \mathbb{F} such that $c_{n-1}(\phi(A), \phi(B))$ equals $X_{1,n}$ or $X_{1,n}^{-1}$.

The first case not excluded by Theorem 2, or already excluded, is n = 6. Let $c_5(a, b)$ equal [[b, a, a], [b, a]]. By repeated application of Lemma 4 the (1, 6) entry of $c_5(A, B)$ is

$$[c_{5}(A, B)]_{1,6} = [[B, A, A], [B, A]]_{1,6}$$

= $[B, A, A]_{1,4}[B, A]_{4,6} - [B, A]_{1,3}[B, A, A]_{3,6}$
= $-\alpha_{1}\alpha_{2}\beta_{3}\alpha_{4}\beta_{5} + \alpha_{1}\alpha_{2}\beta_{3}\beta_{4}\alpha_{5} + 3\alpha_{1}\beta_{2}\alpha_{3}\alpha_{4}\beta_{5} - 4\alpha_{1}\beta_{2}\alpha_{3}\beta_{4}\alpha_{5}$
+ $\alpha_{1}\beta_{2}\beta_{3}\alpha_{4}\alpha_{5} - 2\beta_{1}\alpha_{2}\alpha_{3}\alpha_{4}\beta_{5} + 3\beta_{1}\alpha_{2}\alpha_{3}\beta_{4}\alpha_{5} - \beta_{1}\alpha_{2}\beta_{3}\alpha_{4}\alpha_{5}$

We make some remarks about this polynomial. First each monomial summand has five variables. The variables have distinct subscripts and contain three α 's and two β 's. The polynomial has integer coefficients and [B, A, A] contributes two α_i and one β_j to the first three variables, or to the last three variables of each monomial summand. Similarly, [B, A] contributes an α_i and a β_j to the first two variables, or to the last two variables of each monomial summand. Thus, even without computing $[c_5(A, B)]_{1,6}$, we know that $\alpha_1\alpha_2\alpha_3\beta_4\beta_5$ is not a summand. Setting $\alpha_1 = \alpha_2 = \beta_3 = \alpha_4 = \beta_5 = 1$ and $\beta_1 = \beta_2 = \alpha_3 = \beta_4 = \alpha_5 = 0$ shows that $[c_5(\phi(A), \phi(B))]_{1,6} = -1$ and hence $c_5(\phi(A), \phi(B)) = X_{1,6}^{-1}$. This proves that $\langle \phi(A), \phi(B) \rangle$ is a 2-generated subgroup of $U_6(\mathbb{F})$ of derived length 3 for all fields \mathbb{F} .

Many of the above remarks generalize *mutatis mutandis* to other words in the subgroup $\gamma_{n-1}(F) \cap F^{(d-1)}$. We shall use the following lemma repeatedly.

S.P. GLASBY

Lemma 5. (Multiplication Lemma) With the above notation, suppose that $w \in \gamma_r(F)$, $w' \in \gamma_s(F)$, and $[w(A, B)]_{1,1+r}$ and $[w'(A, B)]_{1,1+s}$ have monomial summands m and m' respectively. If $r \geq s$, and no monomial summand of $[w'(A, B)]_{1,1+s}$ divides m, then $m\psi_r(m')$ is a monomial summand of $[[w(A, B), w'(A, B)]]_{1,1+r+s}$ where $\psi_r(m')$ is the polynomial obtained from m' by adding r to each subscript.

Proof. By Lemma 4, $[[w(A, B), w'(A, B)]]_{1,1+r+s}$ equals

$$[w(A,B)]_{1,1+r}[w'(A,B)]_{1+r,1+r+s} - [w'(A,B)]_{1,1+s}[w(A,B)]_{1+s,1+s+r}$$

and $m\psi_r(m')$ divides the first term. However, as no monomial summand of $[w'(A, B)]_{1,1+s}$ divides m, it follows that $m\psi_r(m')$ is a monomial summand of $[[w(A, B), w'(A, B)]]_{1,1+r+s}$ as desired.

By Theorem 2, the next case of interest is when n = 11. Mimicking the n = 6 case, we seek a word $c_{10}(a, b) \in \gamma_{10}(F) \cap F^{(3)}$ such that the polynomial $[c_{10}(A, B)]_{1,11}$ has a monomial summand with coefficient ± 1 . We then assign the value of 1 to the variables in this summand, and zero to the variables not in the summand. Since $F^{(2)}\gamma_6(F)/\gamma_6(F)$ has two generators, it follows from Lemma 3 that $F^{(3)}\gamma_{11}(F)/\gamma_{11}(F) = \langle c_{10}(a,b)\gamma_{11}(F) \rangle$ is cyclic where

$$c_{10}(a,b) = [[[b,a,b], [b,a]], c_5(a,b)] = [[[b,a,b], [b,a]], [[b,a,a], [b,a]]].$$

We abbreviate the phrase "m is a monomial summand of p" by " $m \in p$ ". Now

$$m_{5} = \beta_{1}\beta_{2}\alpha_{3}\alpha_{4}\beta_{5} \in [[[B, A, B], [B, A]]]_{1,6} \text{ and} m_{5}' = \alpha_{1}\alpha_{2}\beta_{3}\beta_{4}\alpha_{5} \in [c_{5}(A, B)]_{1,6}.$$

Hence by Lemma 5

$$m_{10} = m_5\psi_5(m_5') = \beta_1\beta_2\alpha_3\alpha_4\beta_5\alpha_6\alpha_7\beta_8\beta_9\alpha_{10} \in [c_{10}(A,B)]_{1,11}.$$

Setting $\beta_1 = \beta_2 = \alpha_3 = \cdots = \alpha_{10} = 1$ and $\alpha_1 = \alpha_2 = \beta_3 = \cdots = \beta_{10} = 0$ shows that U_{11} has a 2-generated subgroup of derived length 4.

Theorem 6. Let $d = \lceil \log_2(n) \rceil$. Then U_n has a 2-generated subgroup of derived length d if and only if $\frac{21}{32}2^d < n \leq 2^d$.

Proof. Suppose that U_n has a 2-generated subgroup G of derived length d. It follows from Theorem 2 that $\frac{5}{8}2^d < n \leq 2^d$. However, if $0 \leq d < 5$ then $\lfloor \frac{5}{8}2^d \rfloor = \lfloor \frac{21}{32}2^d \rfloor$. Hence $\frac{21}{32}2^d < n \leq 2^d$ for d < 5. Suppose now that $d \geq 5$. We showed in the preamble to this theorem that $F^{(3)}\gamma_{11}(F)/\gamma_{11}(F)$ is cyclic. Hence by Lemma 3, $F^{(4)} \subseteq \gamma_{21}(F)$. For $d \geq 5$, a simple induction shows that $F^{(d-1)} \subseteq \gamma_{21\cdot 2^{d-5}}(F)$. Since $G^{(d-1)} \subseteq \gamma_{21\cdot 2^{d-5}}(G)$ and $\gamma_n(G) = \{I\}$ it follows that $21 \cdot 2^{d-5} < n \leq 2^d$ as desired.

Conversely, suppose $\frac{21}{32}2^d < n \leq 2^d$. If d = 0, 1, 2, 3, 4, then the values of $n = \lfloor \frac{21}{32}2^d \rfloor + 1$ are 1, 2, 3, 6, 11 respectively. In each of these cases we have shown that U_n has a 2-generated subgroup of derived length d. Suppose henceforth that $d \geq 5$. We shall give a

recursive procedure for constructing a 2-generated subgroup of U_n . It suffices to do this for $n = 21 \cdot 2^{d-5} + 1$.

We use induction on d. The initial case when d = 5 and n = 22 requires the most lengthy calculations. Note that the hypothesis in Lemma 5 that no monomial summand of $[w'(A, B)]_{1,1+s}$ divides m is easily verified in the case when the first s variables of mhave a different number of α 's than one (and hence every) summand of $[w'(A, B)]_{1,1+s}$. A lengthy argument which repeatedly uses this observation and the Multiplication Lemma shows that

$$m_{21} = -\alpha_1 \alpha_2 \alpha_3 \beta_4 \beta_5 \alpha_6 \psi_6(m_5) \psi_{11}(m_{10}) \in c_{21}(a, b)$$

$$m'_{21} = \alpha_1 \alpha_2 \beta_3 \beta_4 \beta_5 \alpha_6 \psi_6(m_5) \psi_{11}(m_{10}) \in c'_{21}(a, b)$$

$$m''_{21} = -\beta_1 \beta_2 \beta_3 \alpha_4 \alpha_5 \beta_6 \psi_6(m_5) \psi_{11}(m_{10}) \in c''_{21}(a, b)$$

where

$$c_{21}(a,b) = [[[[b,a,a,a], [b,a]], c_5(a,b)], c_{10}(a,b)]$$

$$c'_{21}(a,b) = [[[[b,a,a,b], [b,a]], c_5(a,b)], c_{10}(a,b)]$$

$$c''_{21}(a,b) = [[[[b,a,b,b], [b,a]], c_5(a,b)], c_{10}(a,b)].$$

This proves the result for d = 5 because the polynomial $[c_{21}(A, B)]_{1,22}$ has a monomial summand with coefficient ± 1 . The number of α 's in m_{21} , m'_{21} , m'_{21} is congruent to 0, 1, 2 modulo 3 respectively, and so by the Multiplication Lemma

$$\begin{split} m'_{21}\psi_{21}(m''_{21}) &\in d_{21}(a,b) = [c'_{21}(a,b),c''_{21}(a,b)]\\ m''_{21}\psi_{21}(m_{21}) &\in d'_{21}(a,b) = [c''_{21}(a,b),c_{21}(a,b)]\\ m_{21}\psi_{21}(m'_{21}) &\in d''_{21}(a,b) = [c_{21}(a,b),c'_{21}(a,b)]. \end{split}$$

The argument may be applied repeatedly as the number of α 's occurring in $m'_{21}\psi_{21}(m''_{21})$, $m''_{21}\psi_{21}(m_{21})$, $m_{21}\psi_{21}(m'_{21})$ is congruent to 0, 1, 2 modulo 3 respectively. This completes the inductive proof.

Acknowledgment

I would like to thank Peter Pleasants and the referee for their helpful comments. This research was partially supported by URC grant 6294-1341-70766-15.

References

- [1] N. Blackburn, On a special class of p-groups, Acta Mathematica 100 (1958), 45–92.
- [2] M. Hall, The Theory of Groups, Macmillan, 1964.
- [3] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.

DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE, THE UNIVERSITY OF THE SOUTH PACIFIC, PO Box 1168, SUVA, FIJI.