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Abstract. The group Un(F) of all n × n unipotent upper-triangular matrices over F

has derived length d := ⌈log
2
(n)⌉, equivalently 2d−1 < n 6 2d. We prove that Un(F) has

a 3-generated subgroup of derived length d, and it has a 2-generated subgroup of derived
length d if and only if 21

32
2d < n 6 2d.

1. Introduction

Let F be a field and let Un(F) (or Un) denote the group of n×n upper-triangular matrices
over F with 1’s on the main diagonal and 0’s below. If 2d−1 < n 6 2d, then Un has derived
length d and has a subgroup generated by n − 1 elements which also has derived length
d (see [3]). We show in Theorem 2 that Un has a 3-generated subgroup with derived
length d. In Theorem 6 we show that Un has a 2-generated subgroup of derived length d
if and only if 21

32
2d < n 6 2d. It follows that the proportion, π(N), of n 6 N such

that Un has a 2-generated subgroup of maximal derived length satisfies 11
21
< π(N) 6 1,

lim inf π(N) = 11
21

and lim sup π(N) = 11
16
. Theorems 2 and 6 are constructive in the sense

that the generating matrices are explicitly given by recursive formulas.

We shall now introduce some notation and state some well-known properties of Un

(see [3]). The kth term of the lower central series for Un, denoted γk(Un), comprises the
matrices (ai,j) ∈ Un with ai,j = 0 if 0 < j − i < k. Furthermore, the kth term in the

derived series for Un is U
(k)
n = γ2k(Un).

In the sequel we shall assume that d = ⌈log2(n)⌉ and consider subgroups G of Un where
G(d−1) is not trivial. Let 1 6 i < j 6 n and let Xi,j ∈ Un be the matrix obtained by
adding row j of the identity matrix, I, to row i (so its (i, j)th entry is 1). Then

[Xi,j , Xk,ℓ] = X−1
i,j X

−1
k,ℓXi,jXk,ℓ

equals I if j < k, and equals Xi,ℓ if j = k. In order to show that Un has derived length
d for all n satisfying 2d−1 < n 6 2d, it suffices to show that 〈X1,2, X2,3, . . . , Xn−1,n〉 has
derived length d when n = 2d−1 +1. The latter can be proved using induction on d based
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on the following reasoning

X1,9 = [X1,5, X5,9]

= [ [X1,3, X3,5], [X5,7, X7,9] ]

= [ [ [X1,2, X2,3], [X3,4, X4,5] ], [ [X5,6, X6,7], [X7,8, X8,9] ] ].

At the heart of this proof is a binary tree with d layers and 2d − 1 vertices. The vertices

at layer k are the elements X1+(i−1)2k−1,1+i2k−1 of U
(k−1)
n . If j = 1 + (i− 1)2k−1, then the

vertices Xj,j+2k−1 and Xj+2k−1,j+2k of layer k are joined to Xj,j+2k on the next layer.

2. 3-generated subgroups

The idea behind the proof of Theorem 2 is to “re-cycle” vertices of the above binary
tree. For example, the four matrices X1,2, X2,3, X3,4, X4,5 are not needed to show that

X1,5 ∈ U
(2)
5 : three matrices suffice as

[ [X1,2, X2,3X3,4], [X2,3X3,4, X4,5] ] = [X1,3X1,4, X3,5] = X1,5.

The graph at the heart of the proof of Theorem 2 has fewer vertices than the complete
bipartite binary tree with 2d − 1 vertices. It has d layers with 3 vertices per layer, where
the vertices of layer k correspond to elements of G(k−1). Let A, B, C be the matrices
corresponding to the vertices of layer k. Then the commutators [B,C], [C,A], [A,B]
correspond to the vertices of layer k + 1. Thus the edges between layers k and k + 1
form a bipartite graph K, and the full graph is obtained by joining d − 1 copies of K
end-to-end. Our objective is to inductively construct three layer 1 matrices, so that at
least one of the layer d matrices is non-trivial.

Let F be the free group 〈x1, x2, x3 | 〉 of rank 3. The following lemma was much harder
to conceive than to prove.

Lemma 1. Let d be a positive integer, and let n = 2d−1 + 1. Then there exist matrices

An, Bn, Cn ∈ Un and a word wn(x1, x2, x3) ∈ F (d−1) such that

(1) wn(An, Bn, Cn) = X1,n, wn(Bn, Cn, An) = I, and wn(Cn, An, Bn) = I.

Proof. The proof uses induction on d. When d = 1, take w2(x1, x2, x3) = x1 andA2 = X1,2,
B2 = C2 = I. (More generally, if r3 + s3 + t3 − 3rst 6= 0 in F where r, s, t ∈ Z, then
we may take w2 = xr1x

s
2x

t
3 and find A2, B2, C2 ∈ U2 such that (1) holds.) Suppose

that An, Bn, Cn ∈ Un and wn ∈ F (d−1) satisfy (1). We shall construct appropriate
A2n−1, B2n−1, C2n−1 and w2n−1. Now n = 2d−1 + 1 and 2n − 1 = 2d + 1. There is a
surjective homomorphism

π : U2n−1 → Un × Un given by π(A) = (λ(A), ρ(A)),

where λ(A) is the upper-left n × n submatrix of A, and ρ(A) is the lower-right n × n
submatrix of A. Note that λ(A) and ρ(A) overlap at the (n, n)th entry of A, which is a 1.
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Choose A2n−1, B2n−1, C2n−1 ∈ U2n−1 such that

π(A2n−1) = (An, Bn), π(B2n−1) = (Bn, Cn), π(C2n−1) = (Cn, An).

Clearly A2n−1, B2n−1 and C2n−1 are not uniquely defined. (A different choice may be

obtained by multiplying by an element of ker(π) ∼= F
(n−1)2 .) Define w2n−1 by

w2n−1(x1, x2, x3) = [wn(x1, x2, x3), wn(x3, x1, x2) ].

Clearly, w2n−1 ∈ F (d).

Consider w2n−1(A2n−1, B2n−1, C2n−1). Now

π(wn(A2n−1, B2n−1, C2n−1) ) = wn(π(A2n−1), π(B2n−1), π(C2n−1))

=
(

wn(An, Bn, Cn), wn(Bn, Cn, An)
)

= (X1,n, I).

Similarly,

π(wn(B2n−1, C2n−1, A2n−1)) = (I, I) and

π(wn(C2n−1, A2n−1, B2n−1)) = (I,X1,n).

Now π(X1,n) = (X1,n, I) and π(Xn,2n−1) = (I,X1,n). (Here we can tell from the context
whether X1,n lies in U2n−1 or Un.) Therefore

wn(A2n−1, B2n−1, C2n−1) = X1,nZ1,

wn(B2n−1, C2n−1, A2n−1) = Z2, and

wn(C2n−1, A2n−1, B2n−1) = Xn,2n−1Z3

where Z1, Z2, Z3 ∈ ker(π). Since ker(π) is abelian, and is centralized by both X1,n and
Xn,2n−1, it follows that

w2n−1(A2n−1, B2n−1, C2n−1) = [X1,nZ1, Xn,2n−1Z3]

= [X1,n, Xn,2n−1] = X1,2n−1,

w2n−1(B2n−1, C2n−1, A2n−1) = [Z2, X1,nZ1] = I,

w2n−1(C2n−1, A2n−1, B2n−1) = [Xn,2n−1Z3, Z2] = I.

This completes the induction, and the proof. ⊔⊓

Recall the observation that Un(F) has derived length d := ⌈log2(n)⌉, and the subgroup
〈X1,2, X2,3, . . . , Xn−1,n〉 has n− 1 generators and derived length d.

Theorem 2. The group Un(F) of n × n upper-triangular matrices over a field F with

all eigenvalues 1, has a 3-generated subgroup whose derived length is d := ⌈log2(n)⌉.
Furthermore, if n 6

5
8
2d then Un(F) has no 2-generated subgroup of derived length d.
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Proof. Set m = 2d−1 +1. Then both Um and Un have derived length d. By Lemma 1, Um

has a 3-generated subgroup with derived length d, and hence so too does Un, as Un has a
subgroup isomorphic to Um.

If d < 3, then there are no integers in the range 1
2
2d < n 6

5
8
2d. Suppose d > 3 and

G = 〈A,B〉 is a 2-generated subgroup of Un where 1
2
2d < n 6

5
8
2d. Then

γ2(G)/γ3(G) = 〈[A,B]γ3(G)〉

is cyclic, and therefore

G(2) = [γ2(G), γ2(G)] = [γ2(G), γ3(G)] ⊆ γ5(G).

A simple induction shows G(d−1) ⊆ γ5·2d−3(G) for d > 3. Since n 6 5 · 2d−3, we have

G(d−1) ⊆ γ5·2d−3(G) ⊆ γn(G) ⊆ γn(Un) = {I}.

Therefore G has derived length less than d. ⊔⊓

In the above proof, there were choices for A2, B2, C2 and for the subsequent generators
An, Bn, Cn where n = 2d−1 +1. However, once A2, B2 and C2 were specified, the (i, i+1)
entries of An, Bn, Cn (d > 1) were determined, but the (i, j) entries with j − i > 1 could
be arbitrary. It should not surprise the reader that different choices for A2, B2 and C2

can yield different subgroups 〈An, Bn, Cn〉.

We shall give an example of a 2-generated group G = 〈A,B〉 of Un that shows that both
the derived length and the order can depend on F. Let G be the subgroup 〈A,B〉 of U6

where A = X1,2X5,6 and B = X2,3X
−1
3,4X4,5, and suppose that char(F) = p is prime. It

follows from [ [ [B,A], B], [B,A] ] = X2
1,6 and [ [ [B,A], A], [B,A] ] = I that G is metabelian

if p = 2, and has derived length 3 if p > 2. Furthermore, |G| = p7 if p = 2, 3 and |G| = p6

if p > 3. In the latter case G has maximal class (see [1, p. 61]).

3. 2-generated subgroups

Suppose that 5
8
2d < n 6 2d. It is natural to ask whether Un(F) has a 2-generated subgroup

of derived length d. If Um(F) has a 2-generated subgroup of derived length d, then so too
does Un(F) all n satisfying m 6 n 6 2d. In this section we show that the smallest value
of m for which Um has a 2-generated subgroup of derived length d is m = ⌊21

32
2d⌋+1. This

is clearly the case if 0 6 d < 3. Henceforth assume that d > 3.

Let F = 〈a, b | 〉 denote a free group of rank 2. Then γr(F )/γr+1(F ) is an abelian group,
for each positive integer r, which is freely generated by the basic commutators of weight k
(see [2]). Thus a typical element of γ2(F )/γ4(F ) has the form [b, a]i[b, a, a]j [b, a, b]kγ4(F ),
where [b, a, a] and [b, a, b] denote left-normed commutators, i.e. [ [b, a], a] and [ [b, a], b]
respectively. We shall need three lemmas in the sequel. Lemmas 3 and 4 are standard so
we omit their proofs.



SUBGROUPS WITH MAXIMAL DERIVED LENGTH 5

Lemma 3. Let x, x′ ∈ γr(F ) and y, y′ ∈ γs(F ) where x ≡ x′ mod γr+1(F ) and y ≡ y′

mod γs+1(F ). Then [x, y] ≡ [x′, y′] mod γr+s+1(F ).

Applying Lemma 3 to [ [b, a]i[b, a, a]j [b, a, b]k, [b, a]ℓ ] shows that

[ [b, a, a], [b, a] ]γ6(F ) and [ [b, a, b], [b, a] ]γ6(F )

generate F (2)γ6(F )/γ6(F ).

Lemma 4. Let Tr,n(τ1, . . . , τn−r) denote a coset of γr+1(Un) comprising matrices (ti,j)
satisfying ti,j = 0 if 1 6 j − i < r, ti,j = τi if j − i = r, and ti,j arbitrary if j − i > r.
Then [Tr,n(α1, . . . , αn−r), Ts,n(β1, . . . , βn−s)] is contained in

Tr+s,n(α1β1+r − α1+sβ1, . . . , αn−r−sβn−s − αn−rβn−r−s).

How might we go about finding matrices A,B ∈ Un such that 〈A,B〉 has derived
length d? Motivated by the previous section we suspect that the (i, i+1) entries of A and
B are important. Let A ∈ T1,n(α1, . . . , αn−1) and B ∈ T1,n(β1, . . . , βn−1) where the αi and
the βj are regarded as variables. An evaluation homomorphism from the polynomial ring

P = Z[α1, . . . , αn−1, β1, . . . , βn−1]

to F gives rise to a group homomorphism φ : Un(P ) → Un(F). We shall find a word
cn−1(a, b) ∈ γn−1(F )∩F

(d−1) and values for the αi and βj in F such that cn−1(φ(A), φ(B))
equals X1,n or X−1

1,n.

The first case not excluded by Theorem 2, or already excluded, is n = 6. Let c5(a, b)
equal [ [b, a, a], [b, a] ]. By repeated application of Lemma 4 the (1, 6) entry of c5(A,B) is

[c5(A,B)]1,6 = [ [B,A,A], [B,A] ]1,6

= [B,A,A]1,4[B,A]4,6 − [B,A]1,3[B,A,A]3,6

= −α1α2β3α4β5 + α1α2β3β4α5 + 3α1β2α3α4β5− 4α1β2α3β4α5

+ α1β2β3α4α5 − 2β1α2α3α4β5 + 3β1α2α3β4α5 − β1α2β3α4α5

We make some remarks about this polynomial. First each monomial summand has
five variables. The variables have distinct subscripts and contain three α’s and two
β’s. The polynomial has integer coefficients and [B,A,A] contributes two αi and one
βj to the first three variables, or to the last three variables of each monomial summand.
Similarly, [B,A] contributes an αi and a βj to the first two variables, or to the last
two variables of each monomial summand. Thus, even without computing [c5(A,B)]1,6,
we know that α1α2α3β4β5 is not a summand. Setting α1 = α2 = β3 = α4 = β5 = 1
and β1 = β2 = α3 = β4 = α5 = 0 shows that [c5(φ(A), φ(B))]1,6 = −1 and hence
c5(φ(A), φ(B)) = X−1

1,6 . This proves that 〈φ(A), φ(B)〉 is a 2-generated subgroup of U6(F)
of derived length 3 for all fields F.

Many of the above remarks generalize mutatis mutandis to other words in the subgroup
γn−1(F ) ∩ F

(d−1). We shall use the following lemma repeatedly.
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Lemma 5. (Multiplication Lemma) With the above notation, suppose that w ∈ γr(F ),
w′ ∈ γs(F ), and [w(A,B)]1,1+r and [w′(A,B)]1,1+s have monomial summands m and m′

respectively. If r > s, and no monomial summand of [w′(A,B)]1,1+s divides m, then

mψr(m
′) is a monomial summand of [ [w(A,B), w′(A,B)] ]1,1+r+s where ψr(m

′) is the

polynomial obtained from m′ by adding r to each subscript.

Proof. By Lemma 4, [ [w(A,B), w′(A,B)] ]1,1+r+s equals

[w(A,B)]1,1+r[w
′(A,B)]1+r,1+r+s − [w′(A,B)]1,1+s[w(A,B)]1+s,1+s+r

and mψr(m
′) divides the first term. However, as no monomial summand of [w′(A,B)]1,1+s

dividesm, it follows thatmψr(m
′) is a monomial summand of [ [w(A,B), w′(A,B)] ]1,1+r+s

as desired. ⊔⊓ ⊔⊓

By Theorem 2, the next case of interest is when n = 11. Mimicking the n = 6 case,
we seek a word c10(a, b) ∈ γ10(F ) ∩ F (3) such that the polynomial [c10(A,B)]1,11 has a
monomial summand with coefficient ±1. We then assign the value of 1 to the variables
in this summand, and zero to the variables not in the summand. Since F (2)γ6(F )/γ6(F )
has two generators, it follows from Lemma 3 that F (3)γ11(F )/γ11(F ) = 〈c10(a, b)γ11(F )〉
is cyclic where

c10(a, b) = [ [ [b, a, b], [b, a] ], c5(a, b)] = [ [ [b, a, b], [b, a] ], [ [b, a, a], [b, a] ] ].

We abbreviate the phrase “m is a monomial summand of p” by “m ∈ p”. Now

m5 = β1β2α3α4β5 ∈ [ [ [B,A,B], [B,A] ] ]1,6 and

m′

5 = α1α2β3β4α5 ∈ [c5(A,B)]1,6.

Hence by Lemma 5

m10 = m5ψ5(m
′

5) = β1β2α3α4β5α6α7β8β9α10 ∈ [c10(A,B)]1,11.

Setting β1 = β2 = α3 = · · · = α10 = 1 and α1 = α2 = β3 = · · · = β10 = 0 shows that U11

has a 2-generated subgroup of derived length 4.

Theorem 6. Let d = ⌈log2(n)⌉. Then Un has a 2-generated subgroup of derived length d
if and only if 21

32
2d < n 6 2d.

Proof. Suppose that Un has a 2-generated subgroup G of derived length d. It follows from
Theorem 2 that 5

8
2d < n 6 2d. However, if 0 6 d < 5 then ⌊5

8
2d⌋ = ⌊21

32
2d⌋. Hence

21
32
2d < n 6 2d for d < 5. Suppose now that d > 5. We showed in the preamble to

this theorem that F (3)γ11(F )/γ11(F ) is cyclic. Hence by Lemma 3, F (4) ⊆ γ21(F ). For
d > 5, a simple induction shows that F (d−1) ⊆ γ21·2d−5(F ). Since G(d−1) ⊆ γ21·2d−5(G) and
γn(G) = {I} it follows that 21 · 2d−5 < n 6 2d as desired.

Conversely, suppose 21
32
2d < n 6 2d. If d = 0, 1, 2, 3, 4, then the values of n = ⌊21

32
2d⌋+1

are 1, 2, 3, 6, 11 respectively. In each of these cases we have shown that Un has a 2-
generated subgroup of derived length d. Suppose henceforth that d > 5. We shall give a
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recursive procedure for constructing a 2-generated subgroup of Un. It suffices to do this
for n = 21 · 2d−5 + 1.

We use induction on d. The initial case when d = 5 and n = 22 requires the most
lengthy calculations. Note that the hypothesis in Lemma 5 that no monomial summand
of [w′(A,B)]1,1+s divides m is easily verified in the case when the first s variables of m
have a different number of α’s than one (and hence every) summand of [w′(A,B)]1,1+s. A
lengthy argument which repeatedly uses this observation and the Multiplication Lemma
shows that

m21 = −α1α2α3β4β5α6ψ6(m5)ψ11(m10) ∈ c21(a, b)

m′

21 = α1α2β3β4β5α6ψ6(m5)ψ11(m10) ∈ c′21(a, b)

m′′

21 = −β1β2β3α4α5β6ψ6(m5)ψ11(m10) ∈ c′′21(a, b)

where

c21(a, b) = [ [ [ [ b, a, a, a], [b, a] ], c5(a, b)], c10(a, b)]

c′21(a, b) = [ [ [ [ b, a, a, b], [b, a] ], c5(a, b)], c10(a, b)]

c′′21(a, b) = [ [ [ [ b, a, b, b], [b, a] ], c5(a, b)], c10(a, b)].

This proves the result for d = 5 because the polynomial [c21(A,B)]1,22 has a monomial
summand with coefficient ±1. The number of α’s in m21, m

′′

21, m
′

21 is congruent to 0, 1,
2 modulo 3 respectively, and so by the Multiplication Lemma

m′

21ψ21(m
′′

21) ∈ d21(a, b) = [c′21(a, b), c
′′

21(a, b)]

m′′

21ψ21(m21) ∈ d′21(a, b) = [c′′21(a, b), c21(a, b)]

m21ψ21(m
′

21) ∈ d′′21(a, b) = [c21(a, b), c
′

21(a, b)].

The argument may be applied repeatedly as the number of α’s occurring in m′

21ψ21(m
′′

21),
m′′

21ψ21(m21), m21ψ21(m
′

21) is congruent to 0, 1, 2 modulo 3 respectively. This completes
the inductive proof. ⊔⊓ ⊔⊓
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