Subgroups of the upper-triangular matrix group with maximal derived length and a minimal number of generators

S.P. GLASBY

Abstract

The group $U_{n}(\mathbb{F})$ of all $n \times n$ unipotent upper-triangular matrices over \mathbb{F} has derived length $d:=\left\lceil\log _{2}(n)\right\rceil$, equivalently $2^{d-1}<n \leqslant 2^{d}$. We prove that $U_{n}(\mathbb{F})$ has a 3-generated subgroup of derived length d, and it has a 2-generated subgroup of derived length d if and only if $\frac{21}{32} 2^{d}<n \leqslant 2^{d}$.

1. Introduction

Let \mathbb{F} be a field and let $U_{n}(\mathbb{F})$ (or U_{n}) denote the group of $n \times n$ upper-triangular matrices over \mathbb{F} with 1's on the main diagonal and 0 's below. If $2^{d-1}<n \leqslant 2^{d}$, then U_{n} has derived length d and has a subgroup generated by $n-1$ elements which also has derived length d (see [3]). We show in Theorem 2 that U_{n} has a 3-generated subgroup with derived length d. In Theorem 6 we show that U_{n} has a 2-generated subgroup of derived length d if and only if $\frac{21}{32} 2^{d}<n \leqslant 2^{d}$. It follows that the proportion, $\pi(N)$, of $n \leqslant N$ such that U_{n} has a 2-generated subgroup of maximal derived length satisfies $\frac{11}{21}<\pi(N) \leqslant 1$, $\lim \inf \pi(N)=\frac{11}{21}$ and $\lim \sup \pi(N)=\frac{11}{16}$. Theorems 2 and 6 are constructive in the sense that the generating matrices are explicitly given by recursive formulas.

We shall now introduce some notation and state some well-known properties of U_{n} (see [3]). The k th term of the lower central series for U_{n}, denoted $\gamma_{k}\left(U_{n}\right)$, comprises the matrices $\left(a_{i, j}\right) \in U_{n}$ with $a_{i, j}=0$ if $0<j-i<k$. Furthermore, the k th term in the derived series for U_{n} is $U_{n}^{(k)}=\gamma_{2^{k}}\left(U_{n}\right)$.

In the sequel we shall assume that $d=\left\lceil\log _{2}(n)\right\rceil$ and consider subgroups G of U_{n} where $G^{(d-1)}$ is not trivial. Let $1 \leqslant i<j \leqslant n$ and let $X_{i, j} \in U_{n}$ be the matrix obtained by adding row j of the identity matrix, I, to row i (so its (i, j) th entry is 1). Then

$$
\left[X_{i, j}, X_{k, \ell}\right]=X_{i, j}^{-1} X_{k, \ell}^{-1} X_{i, j} X_{k, \ell}
$$

equals I if $j<k$, and equals $X_{i, \ell}$ if $j=k$. In order to show that U_{n} has derived length d for all n satisfying $2^{d-1}<n \leqslant 2^{d}$, it suffices to show that $\left\langle X_{1,2}, X_{2,3}, \ldots, X_{n-1, n}\right\rangle$ has derived length d when $n=2^{d-1}+1$. The latter can be proved using induction on d based
on the following reasoning

$$
\begin{aligned}
X_{1,9} & =\left[X_{1,5}, X_{5,9}\right] \\
& =\left[\left[X_{1,3}, X_{3,5}\right],\left[X_{5,7}, X_{7,9}\right]\right] \\
& =\left[\left[\left[X_{1,2}, X_{2,3}\right],\left[X_{3,4}, X_{4,5}\right]\right],\left[\left[X_{5,6}, X_{6,7}\right],\left[X_{7,8}, X_{8,9}\right]\right]\right] .
\end{aligned}
$$

At the heart of this proof is a binary tree with d layers and $2^{d}-1$ vertices. The vertices at layer k are the elements $X_{1+(i-1) 2^{k-1}, 1+i 2^{k-1}}$ of $U_{n}^{(k-1)}$. If $j=1+(i-1) 2^{k-1}$, then the vertices $X_{j, j+2^{k-1}}$ and $X_{j+2^{k-1}, j+2^{k}}$ of layer k are joined to $X_{j, j+2^{k}}$ on the next layer.

2. 3-GENERATED SUBGROUPS

The idea behind the proof of Theorem 2 is to "re-cycle" vertices of the above binary tree. For example, the four matrices $X_{1,2}, X_{2,3}, X_{3,4}, X_{4,5}$ are not needed to show that $X_{1,5} \in U_{5}^{(2)}$: three matrices suffice as

$$
\left[\left[X_{1,2}, X_{2,3} X_{3,4}\right],\left[X_{2,3} X_{3,4}, X_{4,5}\right]\right]=\left[X_{1,3} X_{1,4}, X_{3,5}\right]=X_{1,5}
$$

The graph at the heart of the proof of Theorem 2 has fewer vertices than the complete bipartite binary tree with $2^{d}-1$ vertices. It has d layers with 3 vertices per layer, where the vertices of layer k correspond to elements of $G^{(k-1)}$. Let A, B, C be the matrices corresponding to the vertices of layer k. Then the commutators $[B, C],[C, A],[A, B]$ correspond to the vertices of layer $k+1$. Thus the edges between layers k and $k+1$ form a bipartite graph K, and the full graph is obtained by joining $d-1$ copies of K end-to-end. Our objective is to inductively construct three layer 1 matrices, so that at least one of the layer d matrices is non-trivial.

Let F be the free group $\left\langle x_{1}, x_{2}, x_{3} \mid\right\rangle$ of rank 3. The following lemma was much harder to conceive than to prove.

Lemma 1. Let d be a positive integer, and let $n=2^{d-1}+1$. Then there exist matrices $A_{n}, B_{n}, C_{n} \in U_{n}$ and a word $w_{n}\left(x_{1}, x_{2}, x_{3}\right) \in F^{(d-1)}$ such that

$$
\begin{equation*}
w_{n}\left(A_{n}, B_{n}, C_{n}\right)=X_{1, n}, w_{n}\left(B_{n}, C_{n}, A_{n}\right)=I, \text { and } w_{n}\left(C_{n}, A_{n}, B_{n}\right)=I \tag{1}
\end{equation*}
$$

Proof. The proof uses induction on d. When $d=1$, take $w_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}$ and $A_{2}=X_{1,2}$, $B_{2}=C_{2}=I$. (More generally, if $r^{3}+s^{3}+t^{3}-3 r s t \neq 0$ in \mathbb{F} where $r, s, t \in \mathbb{Z}$, then we may take $w_{2}=x_{1}^{r} x_{2}^{s} x_{3}^{t}$ and find $A_{2}, B_{2}, C_{2} \in U_{2}$ such that (1) holds.) Suppose that $A_{n}, B_{n}, C_{n} \in U_{n}$ and $w_{n} \in F^{(d-1)}$ satisfy (1). We shall construct appropriate $A_{2 n-1}, B_{2 n-1}, C_{2 n-1}$ and $w_{2 n-1}$. Now $n=2^{d-1}+1$ and $2 n-1=2^{d}+1$. There is a surjective homomorphism

$$
\pi: U_{2 n-1} \rightarrow U_{n} \times U_{n} \quad \text { given by } \quad \pi(A)=(\lambda(A), \rho(A))
$$

where $\lambda(A)$ is the upper-left $n \times n$ submatrix of A, and $\rho(A)$ is the lower-right $n \times n$ submatrix of A. Note that $\lambda(A)$ and $\rho(A)$ overlap at the (n, n) th entry of A, which is a 1 .

Choose $A_{2 n-1}, B_{2 n-1}, C_{2 n-1} \in U_{2 n-1}$ such that

$$
\pi\left(A_{2 n-1}\right)=\left(A_{n}, B_{n}\right), \quad \pi\left(B_{2 n-1}\right)=\left(B_{n}, C_{n}\right), \quad \pi\left(C_{2 n-1}\right)=\left(C_{n}, A_{n}\right)
$$

Clearly $A_{2 n-1}, B_{2 n-1}$ and $C_{2 n-1}$ are not uniquely defined. (A different choice may be obtained by multiplying by an element of $\operatorname{ker}(\pi) \cong \mathbb{F}^{(n-1)^{2}}$.) Define $w_{2 n-1}$ by

$$
w_{2 n-1}\left(x_{1}, x_{2}, x_{3}\right)=\left[w_{n}\left(x_{1}, x_{2}, x_{3}\right), w_{n}\left(x_{3}, x_{1}, x_{2}\right)\right] .
$$

Clearly, $w_{2 n-1} \in F^{(d)}$.
Consider $w_{2 n-1}\left(A_{2 n-1}, B_{2 n-1}, C_{2 n-1}\right)$. Now

$$
\begin{aligned}
\pi\left(w_{n}\left(A_{2 n-1}, B_{2 n-1}, C_{2 n-1}\right)\right) & =w_{n}\left(\pi\left(A_{2 n-1}\right), \pi\left(B_{2 n-1}\right), \pi\left(C_{2 n-1}\right)\right) \\
& =\left(w_{n}\left(A_{n}, B_{n}, C_{n}\right), w_{n}\left(B_{n}, C_{n}, A_{n}\right)\right) \\
& =\left(X_{1, n}, I\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \pi\left(w_{n}\left(B_{2 n-1}, C_{2 n-1}, A_{2 n-1}\right)\right)=(I, I) \quad \text { and } \\
& \pi\left(w_{n}\left(C_{2 n-1}, A_{2 n-1}, B_{2 n-1}\right)\right)=\left(I, X_{1, n}\right) .
\end{aligned}
$$

Now $\pi\left(X_{1, n}\right)=\left(X_{1, n}, I\right)$ and $\pi\left(X_{n, 2 n-1}\right)=\left(I, X_{1, n}\right)$. (Here we can tell from the context whether $X_{1, n}$ lies in $U_{2 n-1}$ or U_{n}.) Therefore

$$
\begin{aligned}
& w_{n}\left(A_{2 n-1}, B_{2 n-1}, C_{2 n-1}\right)=X_{1, n} Z_{1}, \\
& w_{n}\left(B_{2 n-1}, C_{2 n-1}, A_{2 n-1}\right)=Z_{2}, \quad \text { and } \\
& w_{n}\left(C_{2 n-1}, A_{2 n-1}, B_{2 n-1}\right)=X_{n, 2 n-1} Z_{3}
\end{aligned}
$$

where $Z_{1}, Z_{2}, Z_{3} \in \operatorname{ker}(\pi)$. Since $\operatorname{ker}(\pi)$ is abelian, and is centralized by both $X_{1, n}$ and $X_{n, 2 n-1}$, it follows that

$$
\begin{aligned}
w_{2 n-1}\left(A_{2 n-1}, B_{2 n-1}, C_{2 n-1}\right) & =\left[X_{1, n} Z_{1}, X_{n, 2 n-1} Z_{3}\right] \\
& =\left[X_{1, n}, X_{n, 2 n-1}\right]=X_{1,2 n-1}, \\
w_{2 n-1}\left(B_{2 n-1}, C_{2 n-1}, A_{2 n-1}\right) & =\left[Z_{2}, X_{1, n} Z_{1}\right]=I, \\
w_{2 n-1}\left(C_{2 n-1}, A_{2 n-1}, B_{2 n-1}\right) & =\left[X_{n, 2 n-1} Z_{3}, Z_{2}\right]=I .
\end{aligned}
$$

This completes the induction, and the proof.
Recall the observation that $U_{n}(\mathbb{F})$ has derived length $d:=\left\lceil\log _{2}(n)\right\rceil$, and the subgroup $\left\langle X_{1,2}, X_{2,3}, \ldots, X_{n-1, n}\right\rangle$ has $n-1$ generators and derived length d.

Theorem 2. The group $U_{n}(\mathbb{F})$ of $n \times n$ upper-triangular matrices over a field \mathbb{F} with all eigenvalues 1, has a 3-generated subgroup whose derived length is $d:=\left\lceil\log _{2}(n)\right\rceil$. Furthermore, if $n \leqslant \frac{5}{8} 2^{d}$ then $U_{n}(\mathbb{F})$ has no 2-generated subgroup of derived length d.

Proof. Set $m=2^{d-1}+1$. Then both U_{m} and U_{n} have derived length d. By Lemma $1, U_{m}$ has a 3-generated subgroup with derived length d, and hence so too does U_{n}, as U_{n} has a subgroup isomorphic to U_{m}.

If $d<3$, then there are no integers in the range $\frac{1}{2} 2^{d}<n \leqslant \frac{5}{8} 2^{d}$. Suppose $d \geqslant 3$ and $G=\langle A, B\rangle$ is a 2-generated subgroup of U_{n} where $\frac{1}{2} 2^{d}<n \leqslant \frac{5}{8} 2^{d}$. Then

$$
\gamma_{2}(G) / \gamma_{3}(G)=\left\langle[A, B] \gamma_{3}(G)\right\rangle
$$

is cyclic, and therefore

$$
G^{(2)}=\left[\gamma_{2}(G), \gamma_{2}(G)\right]=\left[\gamma_{2}(G), \gamma_{3}(G)\right] \subseteq \gamma_{5}(G)
$$

A simple induction shows $G^{(d-1)} \subseteq \gamma_{5 \cdot 2^{d-3}}(G)$ for $d \geqslant 3$. Since $n \leqslant 5 \cdot 2^{d-3}$, we have

$$
G^{(d-1)} \subseteq \gamma_{5 \cdot 2^{d-3}}(G) \subseteq \gamma_{n}(G) \subseteq \gamma_{n}\left(U_{n}\right)=\{I\}
$$

Therefore G has derived length less than d.
In the above proof, there were choices for A_{2}, B_{2}, C_{2} and for the subsequent generators A_{n}, B_{n}, C_{n} where $n=2^{d-1}+1$. However, once A_{2}, B_{2} and C_{2} were specified, the $(i, i+1)$ entries of $A_{n}, B_{n}, C_{n}(d>1)$ were determined, but the (i, j) entries with $j-i>1$ could be arbitrary. It should not surprise the reader that different choices for A_{2}, B_{2} and C_{2} can yield different subgroups $\left\langle A_{n}, B_{n}, C_{n}\right\rangle$.

We shall give an example of a 2-generated group $G=\langle A, B\rangle$ of U_{n} that shows that both the derived length and the order can depend on \mathbb{F}. Let G be the subgroup $\langle A, B\rangle$ of U_{6} where $A=X_{1,2} X_{5,6}$ and $B=X_{2,3} X_{3,4}^{-1} X_{4,5}$, and suppose that $\operatorname{char}(\mathbb{F})=p$ is prime. It follows from $[[[B, A], B],[B, A]]=X_{1,6}^{2}$ and $[[[B, A], A],[B, A]]=I$ that G is metabelian if $p=2$, and has derived length 3 if $p>2$. Furthermore, $|G|=p^{7}$ if $p=2,3$ and $|G|=p^{6}$ if $p>3$. In the latter case G has maximal class (see [1, p. 61]).

3. 2-GENERATED SUBGROUPS

Suppose that $\frac{5}{8} 2^{d}<n \leqslant 2^{d}$. It is natural to ask whether $U_{n}(\mathbb{F})$ has a 2-generated subgroup of derived length d. If $U_{m}(\mathbb{F})$ has a 2-generated subgroup of derived length d, then so too does $U_{n}(\mathbb{F})$ all n satisfying $m \leqslant n \leqslant 2^{d}$. In this section we show that the smallest value of m for which U_{m} has a 2-generated subgroup of derived length d is $m=\left\lfloor\frac{21}{32} 2^{d}\right\rfloor+1$. This is clearly the case if $0 \leqslant d<3$. Henceforth assume that $d \geqslant 3$.

Let $F=\langle a, b \mid\rangle$ denote a free group of rank 2 . Then $\gamma_{r}(F) / \gamma_{r+1}(F)$ is an abelian group, for each positive integer r, which is freely generated by the basic commutators of weight k (see [2]). Thus a typical element of $\gamma_{2}(F) / \gamma_{4}(F)$ has the form $[b, a]^{i}[b, a, a]^{j}[b, a, b]^{k} \gamma_{4}(F)$, where $[b, a, a]$ and $[b, a, b]$ denote left-normed commutators, i.e. $[[b, a], a]$ and $[[b, a], b]$ respectively. We shall need three lemmas in the sequel. Lemmas 3 and 4 are standard so we omit their proofs.

Lemma 3. Let $x, x^{\prime} \in \gamma_{r}(F)$ and $y, y^{\prime} \in \gamma_{s}(F)$ where $x \equiv x^{\prime} \bmod \gamma_{r+1}(F)$ and $y \equiv y^{\prime}$ $\bmod \gamma_{s+1}(F)$. Then $[x, y] \equiv\left[x^{\prime}, y^{\prime}\right] \bmod \gamma_{r+s+1}(F)$.

Applying Lemma 3 to $\left[[b, a]^{i}[b, a, a]^{j}[b, a, b]^{k},[b, a]^{\ell}\right]$ shows that

$$
[[b, a, a],[b, a]] \gamma_{6}(F) \quad \text { and } \quad[[b, a, b],[b, a]] \gamma_{6}(F)
$$

generate $F^{(2)} \gamma_{6}(F) / \gamma_{6}(F)$.
Lemma 4. Let $T_{r, n}\left(\tau_{1}, \ldots, \tau_{n-r}\right)$ denote a coset of $\gamma_{r+1}\left(U_{n}\right)$ comprising matrices $\left(t_{i, j}\right)$ satisfying $t_{i, j}=0$ if $1 \leqslant j-i<r, t_{i, j}=\tau_{i}$ if $j-i=r$, and $t_{i, j}$ arbitrary if $j-i>r$. Then $\left[T_{r, n}\left(\alpha_{1}, \ldots, \alpha_{n-r}\right), T_{s, n}\left(\beta_{1}, \ldots, \beta_{n-s}\right)\right]$ is contained in

$$
T_{r+s, n}\left(\alpha_{1} \beta_{1+r}-\alpha_{1+s} \beta_{1}, \ldots, \alpha_{n-r-s} \beta_{n-s}-\alpha_{n-r} \beta_{n-r-s}\right) .
$$

How might we go about finding matrices $A, B \in U_{n}$ such that $\langle A, B\rangle$ has derived length d ? Motivated by the previous section we suspect that the $(i, i+1)$ entries of A and B are important. Let $A \in T_{1, n}\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)$ and $B \in T_{1, n}\left(\beta_{1}, \ldots, \beta_{n-1}\right)$ where the α_{i} and the β_{j} are regarded as variables. An evaluation homomorphism from the polynomial ring

$$
P=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{1}, \ldots, \beta_{n-1}\right]
$$

to \mathbb{F} gives rise to a group homomorphism $\phi: U_{n}(P) \rightarrow U_{n}(\mathbb{F})$. We shall find a word $c_{n-1}(a, b) \in \gamma_{n-1}(F) \cap F^{(d-1)}$ and values for the α_{i} and β_{j} in \mathbb{F} such that $c_{n-1}(\phi(A), \phi(B))$ equals $X_{1, n}$ or $X_{1, n}^{-1}$.

The first case not excluded by Theorem 2, or already excluded, is $n=6$. Let $c_{5}(a, b)$ equal $[[b, a, a],[b, a]]$. By repeated application of Lemma 4 the $(1,6)$ entry of $c_{5}(A, B)$ is

$$
\begin{aligned}
{\left[c_{5}(A, B)\right]_{1,6}=} & {[[B, A, A],[B, A]]_{1,6} } \\
= & {[B, A, A]_{1,4}[B, A]_{4,6}-[B, A]_{1,3}[B, A, A]_{3,6} } \\
= & -\alpha_{1} \alpha_{2} \beta_{3} \alpha_{4} \beta_{5}+\alpha_{1} \alpha_{2} \beta_{3} \beta_{4} \alpha_{5}+3 \alpha_{1} \beta_{2} \alpha_{3} \alpha_{4} \beta_{5}-4 \alpha_{1} \beta_{2} \alpha_{3} \beta_{4} \alpha_{5} \\
& +\alpha_{1} \beta_{2} \beta_{3} \alpha_{4} \alpha_{5}-2 \beta_{1} \alpha_{2} \alpha_{3} \alpha_{4} \beta_{5}+3 \beta_{1} \alpha_{2} \alpha_{3} \beta_{4} \alpha_{5}-\beta_{1} \alpha_{2} \beta_{3} \alpha_{4} \alpha_{5}
\end{aligned}
$$

We make some remarks about this polynomial. First each monomial summand has five variables. The variables have distinct subscripts and contain three α 's and two β 's. The polynomial has integer coefficients and $[B, A, A]$ contributes two α_{i} and one β_{j} to the first three variables, or to the last three variables of each monomial summand. Similarly, $[B, A]$ contributes an α_{i} and a β_{j} to the first two variables, or to the last two variables of each monomial summand. Thus, even without computing $\left[c_{5}(A, B)\right]_{1,6}$, we know that $\alpha_{1} \alpha_{2} \alpha_{3} \beta_{4} \beta_{5}$ is not a summand. Setting $\alpha_{1}=\alpha_{2}=\beta_{3}=\alpha_{4}=\beta_{5}=1$ and $\beta_{1}=\beta_{2}=\alpha_{3}=\beta_{4}=\alpha_{5}=0$ shows that $\left[c_{5}(\phi(A), \phi(B))\right]_{1,6}=-1$ and hence $c_{5}(\phi(A), \phi(B))=X_{1,6}^{-1}$. This proves that $\langle\phi(A), \phi(B)\rangle$ is a 2-generated subgroup of $U_{6}(\mathbb{F})$ of derived length 3 for all fields \mathbb{F}.

Many of the above remarks generalize mutatis mutandis to other words in the subgroup $\gamma_{n-1}(F) \cap F^{(d-1)}$. We shall use the following lemma repeatedly.

Lemma 5. (Multiplication Lemma) With the above notation, suppose that $w \in \gamma_{r}(F)$, $w^{\prime} \in \gamma_{s}(F)$, and $[w(A, B)]_{1,1+r}$ and $\left[w^{\prime}(A, B)\right]_{1,1+s}$ have monomial summands m and m^{\prime} respectively. If $r \geqslant s$, and no monomial summand of $\left[w^{\prime}(A, B)\right]_{1,1+s}$ divides m, then $m \psi_{r}\left(m^{\prime}\right)$ is a monomial summand of $\left[\left[w(A, B), w^{\prime}(A, B)\right]\right]_{1,1+r+s}$ where $\psi_{r}\left(m^{\prime}\right)$ is the polynomial obtained from m^{\prime} by adding r to each subscript.

Proof. By Lemma 4, $\left[\left[w(A, B), w^{\prime}(A, B)\right]\right]_{1,1+r+s}$ equals

$$
[w(A, B)]_{1,1+r}\left[w^{\prime}(A, B)\right]_{1+r, 1+r+s}-\left[w^{\prime}(A, B)\right]_{1,1+s}[w(A, B)]_{1+s, 1+s+r}
$$

and $m \psi_{r}\left(m^{\prime}\right)$ divides the first term. However, as no monomial summand of $\left[w^{\prime}(A, B)\right]_{1,1+s}$ divides m, it follows that $m \psi_{r}\left(m^{\prime}\right)$ is a monomial summand of $\left[\left[w(A, B), w^{\prime}(A, B)\right]\right]_{1,1+r+s}$ as desired.

By Theorem 2, the next case of interest is when $n=11$. Mimicking the $n=6$ case, we seek a word $c_{10}(a, b) \in \gamma_{10}(F) \cap F^{(3)}$ such that the polynomial $\left[c_{10}(A, B)\right]_{1,11}$ has a monomial summand with coefficient ± 1. We then assign the value of 1 to the variables in this summand, and zero to the variables not in the summand. Since $F^{(2)} \gamma_{6}(F) / \gamma_{6}(F)$ has two generators, it follows from Lemma 3 that $F^{(3)} \gamma_{11}(F) / \gamma_{11}(F)=\left\langle c_{10}(a, b) \gamma_{11}(F)\right\rangle$ is cyclic where

$$
c_{10}(a, b)=\left[[[b, a, b],[b, a]], c_{5}(a, b)\right]=[[[b, a, b],[b, a]],[[b, a, a],[b, a]]] .
$$

We abbreviate the phrase " m is a monomial summand of p " by " $m \in p$ ". Now

$$
\begin{aligned}
m_{5} & =\beta_{1} \beta_{2} \alpha_{3} \alpha_{4} \beta_{5} \in[[[B, A, B],[B, A]]]_{1,6} \quad \text { and } \\
m_{5}^{\prime} & =\alpha_{1} \alpha_{2} \beta_{3} \beta_{4} \alpha_{5} \in\left[c_{5}(A, B)\right]_{1,6} .
\end{aligned}
$$

Hence by Lemma 5

$$
m_{10}=m_{5} \psi_{5}\left(m_{5}^{\prime}\right)=\beta_{1} \beta_{2} \alpha_{3} \alpha_{4} \beta_{5} \alpha_{6} \alpha_{7} \beta_{8} \beta_{9} \alpha_{10} \in\left[c_{10}(A, B)\right]_{1,11}
$$

Setting $\beta_{1}=\beta_{2}=\alpha_{3}=\cdots=\alpha_{10}=1$ and $\alpha_{1}=\alpha_{2}=\beta_{3}=\cdots=\beta_{10}=0$ shows that U_{11} has a 2 -generated subgroup of derived length 4 .

Theorem 6. Let $d=\left\lceil\log _{2}(n)\right\rceil$. Then U_{n} has a 2-generated subgroup of derived length d if and only if $\frac{21}{32} 2^{d}<n \leqslant 2^{d}$.

Proof. Suppose that U_{n} has a 2-generated subgroup G of derived length d. It follows from Theorem 2 that $\frac{5}{8} 2^{d}<n \leqslant 2^{d}$. However, if $0 \leqslant d<5$ then $\left\lfloor\frac{5}{8} 2^{d}\right\rfloor=\left\lfloor\frac{21}{32} 2^{d}\right\rfloor$. Hence $\frac{21}{32} 2^{d}<n \leqslant 2^{d}$ for $d<5$. Suppose now that $d \geqslant 5$. We showed in the preamble to this theorem that $F^{(3)} \gamma_{11}(F) / \gamma_{11}(F)$ is cyclic. Hence by Lemma 3, $F^{(4)} \subseteq \gamma_{21}(F)$. For $d \geqslant 5$, a simple induction shows that $F^{(d-1)} \subseteq \gamma_{21 \cdot 2^{d-5}}(F)$. Since $G^{(d-1)} \subseteq \gamma_{21 \cdot 2^{d-5}}(G)$ and $\gamma_{n}(G)=\{I\}$ it follows that $21 \cdot 2^{d-5}<n \leqslant 2^{d}$ as desired.

Conversely, suppose $\frac{21}{32} 2^{d}<n \leqslant 2^{d}$. If $d=0,1,2,3,4$, then the values of $n=\left\lfloor\frac{21}{32} 2^{d}\right\rfloor+1$ are $1,2,3,6,11$ respectively. In each of these cases we have shown that U_{n} has a 2 generated subgroup of derived length d. Suppose henceforth that $d \geqslant 5$. We shall give a
recursive procedure for constructing a 2-generated subgroup of U_{n}. It suffices to do this for $n=21 \cdot 2^{d-5}+1$.

We use induction on d. The initial case when $d=5$ and $n=22$ requires the most lengthy calculations. Note that the hypothesis in Lemma 5 that no monomial summand of $\left[w^{\prime}(A, B)\right]_{1,1+s}$ divides m is easily verified in the case when the first s variables of m have a different number of α 's than one (and hence every) summand of $\left[w^{\prime}(A, B)\right]_{1,1+s}$. A lengthy argument which repeatedly uses this observation and the Multiplication Lemma shows that

$$
\begin{aligned}
& m_{21}=-\alpha_{1} \alpha_{2} \alpha_{3} \beta_{4} \beta_{5} \alpha_{6} \psi_{6}\left(m_{5}\right) \psi_{11}\left(m_{10}\right) \in c_{21}(a, b) \\
& m_{21}^{\prime}=\alpha_{1} \alpha_{2} \beta_{3} \beta_{4} \beta_{5} \alpha_{6} \psi_{6}\left(m_{5}\right) \psi_{11}\left(m_{10}\right) \in c_{21}^{\prime}(a, b) \\
& m_{21}^{\prime \prime}=-\beta_{1} \beta_{2} \beta_{3} \alpha_{4} \alpha_{5} \beta_{6} \psi_{6}\left(m_{5}\right) \psi_{11}\left(m_{10}\right) \in c_{21}^{\prime \prime}(a, b)
\end{aligned}
$$

where

$$
\begin{aligned}
c_{21}(a, b) & =\left[\left[[[b, a, a, a],[b, a]], c_{5}(a, b)\right], c_{10}(a, b)\right] \\
c_{21}^{\prime}(a, b) & =\left[\left[[[b, a, a, b],[b, a]], c_{5}(a, b)\right], c_{10}(a, b)\right] \\
c_{21}^{\prime \prime}(a, b) & =\left[\left[[[b, a, b, b],[b, a]], c_{5}(a, b)\right], c_{10}(a, b)\right] .
\end{aligned}
$$

This proves the result for $d=5$ because the polynomial $\left[c_{21}(A, B)\right]_{1,22}$ has a monomial summand with coefficient ± 1. The number of α 's in $m_{21}, m_{21}^{\prime \prime}, m_{21}^{\prime}$ is congruent to 0,1 , 2 modulo 3 respectively, and so by the Multiplication Lemma

$$
\begin{aligned}
& m_{21}^{\prime} \psi_{21}\left(m_{21}^{\prime \prime}\right) \in d_{21}(a, b)=\left[c_{21}^{\prime}(a, b), c_{21}^{\prime \prime}(a, b)\right] \\
& m_{21}^{\prime \prime} \psi_{21}\left(m_{21}\right) \in d_{21}^{\prime}(a, b)=\left[c_{21}^{\prime \prime}(a, b), c_{21}(a, b)\right] \\
& m_{21} \psi_{21}\left(m_{21}^{\prime}\right) \in d_{21}^{\prime \prime}(a, b)=\left[c_{21}(a, b), c_{21}^{\prime}(a, b)\right] .
\end{aligned}
$$

The argument may be applied repeatedly as the number of α 's occurring in $m_{21}^{\prime} \psi_{21}\left(m_{21}^{\prime \prime}\right)$, $m_{21}^{\prime \prime} \psi_{21}\left(m_{21}\right), m_{21} \psi_{21}\left(m_{21}^{\prime}\right)$ is congruent to $0,1,2$ modulo 3 respectively. This completes the inductive proof.

Acknowledgment

I would like to thank Peter Pleasants and the referee for their helpful comments. This research was partially supported by URC grant 6294-1341-70766-15.

References

[1] N. Blackburn, On a special class of p-groups, Acta Mathematica 100 (1958), 45-92.
[2] M. Hall, The Theory of Groups, Macmillan, 1964.
[3] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967.
Department of Mathematics and Computing Science, The University of the South Pacific, PO Box 1168, Suva, Fiji.

