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Abstract. Let F be a field, G a finite group, H a normal subgroup of prime

index p, and V an irreducible FH-module. If F is algebraically closed and

of characteristic 0, the FG-module induced from V is either irreducible or a

direct sum of p pairwise nonisomorphic irreducible modules. It is shown here

that if F is not assumed algebraically closed and its characteristic is not 0,

then there are not two but six possibilities for the structure of the induced

module.

1. Introduction

Throughout this paper, F denotes a field, G a finite group, andH a normal

subgroup of prime index p in G.

Given a representation σ of H over F and an element g of G, the g-con-

jugate of σ is the composite of σ with the automorphism h 7→ ghg−1 of H.

The G-conjugates are the g-conjugates with g ∈ G. If σ is equivalent to all
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its G-conjugates, we say that it is G-stable. Conjugacy and stability of FH-

modules are defined similarly. This paper is concerned with the structure

of FG-modules induced from irreducible FH-modules. It is well known that

if the FH-module in question is not G-stable then the induced module is

irreducible: therefore we restrict attention to the G-stable case. Specifically,

throughout the paper, V denotes a G-stable irreducible FH-module.

Recall that in the classical case (F algebraically closed of characteristic

0) the induced FG-module (which we write simply as V ↑) is the direct sum

U1 ⊕ · · · ⊕ Up of p pairwise nonisomorphic irreducibles, and the restrictions

Ui↓ are all isomorphic to V . The aim of this note is to explore, with compu-

tational applications in mind, what one can say about V ↑ when F is finite.

A little extra argument will show that the result does not get any more

complicated if one allows F to be any field of prime characteristic.

Since we are not assuming that F is algebraically closed, a key role will

be played by the endomorphism ring of V : set EndFH V = E. By Schur’s

Lemma, E is a division algebra over F. Thus if F is finite then, by a theorem

of Wedderburn, E is also a field. More generally, we shall see that if F is of

prime characteristic then E is a field that is obtainable from F by adjoining

a root of 1; in particular, E|F is a Galois extension with cyclic Galois group.

Using the natural action of E on V , we may consider V as an E-space

rather than an F-space. The EH-module so obtained will be denoted by

V E. One important question for the structure of V ↑ is whether V E is also

G-stable. If the answer is affirmative, we say that V is absolutely G-stable.

We need one more piece of notation before we can state our theorem.

When the characteristic of F is not p, we write E
( p√

1
)

for the field obtained

from E by adjoining a primitive pth root of 1, and s for the degree |E
( p√

1
)

: E|
of this field over E, noting that s is a divisor of p− 1.

Theorem. Let F be a field of prime characteristic, G a finite group, H a

normal subgroup of prime index p, and V a G-stable irreducible FH-module

with E = EndFH V .
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(a) If V is not absolutely G-stable, then V ↑ is U⊕p, the direct sum of p

copies of an irreducible FG-module U . Here EndFG U is a subfield of E that

contains F and is such that |E : EndFG U | = p, and U↓ = V .

(b) If V is absolutely G-stable and the characteristic of F is p, then

V ↑ is a uniserial module of composition length p, and its composition fac-

tors are pairwise isomorphic. If U is one of these composition factors, then

EndFG U = E and U↓ = V .

(c) If V is absolutely G-stable, if the characteristic of F is not p, and

if E does not contain a primitive pth root of 1 (that is, if s > 1), then

V ↑ = U⊕W1⊕· · ·⊕W(p−1)/s where U and the Wj are pairwise nonisomorphic

irreducibles such that EndFG U = E and EndFG Wj = E
( p√

1
)

while U↓ = V

and Wj↓ = V ⊕s.

(d) If V is absolutely G-stable, if the characteristic of F is not p, and if

E does contain a primitive pth root of 1 (that is, if s = 1), then either V ↑ is

the direct sum U1 ⊕ · · · ⊕ Up of p pairwise nonisomorphic irreducibles, each

with EndFG Ui = E and Ui↓ = V , or V ↑ itself is irreducible. In the latter

case, EndFG(V ↑) is a degree p extension of E obtainable by adjoining a root

of 1, and of course V ↑↓ = V ⊕p.

Case (a) cannot arise when G is abelian, but it does arise when H is

cyclic: let q be any prime power, F = GF (q), G = ΓL(1, qp) ∩ GL(p, q),

H = GL(1, qp), and V the restriction of the natural FGL(p, q)-module. All

other cases arise even with finite F and cyclic G. In case (d), it is irrelevant

whether F itself contains a primitive pth root of 1. Note that if V were not

G-stable, V ↑ would be irreducible but with EndFG(V ↑) = E and V ↑↓ ≇ V ⊕p:

hence we do not consider that in that case the structure of V ↑ would be ‘the

same’ as in the second part of case (d).

The methods we use hardly go beyond what can be found in Huppert and

Blackburn [2] (see particularly Sections VII.1, VII.4 and VII.9), and much

of the result itself may well be at least in the folklore: we have made no

systematic attempt to track down references. We aim here for a coordinate-
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free treatment, leaving algorithmic considerations for another paper. Where

there is no danger of confusion, we often abuse language by not distinguishing

between a module and its isomorphism class (or between isomorphism and

equality of modules).

Implicit in the Theorem is an overview of the irreducible FG-modules

whose restriction to H is isomorphic to V . The proof of the Theorem starts

with a careful analysis of these in the case when F is finite: this occupies Sec-

tion 2. Changing from V to V E is not the only way we need to change the

field of scalars: Section 3 is devoted to a discussion of the relevant options.

Sections 4, 5, 6 prove the Theorem under the assumption that F is finite.

Finally, Section 7 extends the arguments to infinite F of prime characteristic,

using a (presumably well-known) result to the effect that the theory of com-

pletely reducible representations of a finite group over such an F is always

‘the same’ as over a suitable finite subfield.

2. Extending to G a stable irreducible representation of H

Until the last section of the paper, we assume that F is finite. We know

then that E is a field, and we refer to it as the endomorphism field of V .

In preparation for the proof of the Theorem, in this section we focus on a

particular aspect: given a G-stable irreducible FH-module V , what can be

said about the existence and uniqueness of FG-modules U such that U↓ = V ?

By Nakayama Reciprocity, such a U is both a submodule and a factormodule

of V ↑; indeed, it is a direct summand of V ↑ when the characteristic is not p

(see VII.9.4 in [2]).

It will be more convenient to conduct this discussion in terms of represen-

tations, adapting a familiar argument. Let

σ : H → AutF V, h 7→ hσ

stand for the representation afforded by V . We think of E as the centralizer

of Hσ in EndF V . The assumption that (the isomorphism type of) V is
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G-stable means that to each element g of G there exist αg in AutF V such

that

(ghg−1)σ = αgh
σα−1

g for all h in H.

For a given g, the elements αg of AutF V with this property normalize the

multiplicative group E× of nonzero elements of E and form a coset modulo

E×. Let N stand for the normalizer of Hσ in AutF V : it is easy to verify

that G → N/E×, g 7→ αgE
× is a homomorphism. It follows that conjugation

by (αg)
p or αgp or by (gp)σ gives the same automorphism of Hσ, whence

(αg)
−p(gp)σ ∈ E×.

Choose an element a such that G = 〈a〉H, and write αa simply as α. Note

that (ap)σ and α commute (put g = a and h = ap in the second last displayed

formula).

If there is a representation, ρ say, of G over F whose restriction to H is

σ, then aρ ∈ αE× and (aρ)p = (ap)σ. Conversely, if there is an ε in E×

such that (αε)p = (ap)σ, then σ extends to a ρ such that aρ = αε (see, for

example, VII.9.8 in [2]). Thus the existence of U boils down to this: is there

an ε in E× such that (αε)p = (ap)σ?

Consider first the case that V is G-stable even as EH-module: that is, α

centralizes E×. This is what we have called the absolutely stable case. What

is wanted then is that ε be a pth root of α−p(ap)σ in E×. If E× has no

element of order p (note this is always so when the characteristic of F is p,

but can also happen when that characteristic is not p), then each element

has precisely one pth root in E×: so there is precisely one ρ which extends σ.

On the other hand, if E× does have an element of order p, then α−p(ap)σ has

either p distinct roots in E or none at all. When there are p, let ε, ε′ be two

of them, and define two extensions of σ by setting aρ = αε and aρ
′

= αε′.

If these were equivalent, ρ′ would be ρ followed by an inner automorphism

of AutF V . Since on H they agree with σ, this inner automorphism would

have to be induced by an element of E×. However, in this case E centralizes
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not only Hσ but aρ as well. Thus when there are p distinct ε, they yield p

pairwise inequivalent ρ which extend σ.

Consider next the case that V is not G-stable as an EH-module: that is,

α does not centralize E×. This is the stable but not absolutely stable case.

Of course α still normalizes E×; by conjugation, it induces a nontrivial field

automorphism on E, which has order p (because α−p(ap)σ ∈ E and (ap)σ

does centralize E). The fixed points form a subfield, Ep say, which contains

F and α−p(ap)σ, and is such that |E : Ep| = p. Denote the cardinality of Ep

by q. There is an integer k such that 0 < k < p and

α−1ξα = ξq
k

for each ξ in E.

Set r = (qp−1)/(q−1). Using that ξq
p

= ξ, it is easy to see that (αε)p = αpεr.

Our question therefore comes to this: does α−p(ap)σ have an rth root in E?

Since α−p(ap)σ ∈ E×
p and since r is the index of E×

p in the cyclic group E×,

the answer is always yes; indeed, our element has precisely r distinct rth

roots in E×. If ε is one of them, the others are the δε as δ ranges through

the elements of the unique subgroup of order r in E×. Define two extensions

of σ by setting aρ = αε and aρ
′

= αδε. Since r and (qk − 1)/(q − 1) are

relatively prime and since the subgroup of order r in E× has index q − 1, it

follows that δ = ηq
k−1 for some η in E×. One can readily verify (using the

last displayed equation) that aρ
′

= ηaρη−1, whence ρ′ is equivalent to ρ. We

conclude that while in this case there are r distinct choices for ε, there is only

one equivalence class of extensions ρ of σ. (In Section 4, we shall rederive

the results of this paragraph, and more, along different lines.)

We have now exhausted all possibilities. However, for later use we need

to say a little more about the case when E = F (that is, σ is absolutely

irreducible) and there is no ρ that extends σ. Then E does contain primitive

pth roots of 1 but α−p(ap)σ has no pth root in E, and therefore the polynomial

xp − α−p(ap)σ is irreducible over E. Let Ep denote the unique degree p

extension of E: this is the splitting field over E of our polynomial. Note

that α−p(ap)σ has p distinct pth roots ε in Ep, and these roots are permuted
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transitively by the Galois group Gal
(

Ep
∣

∣E
)

. Viewed as a representation over

Ep, σ is still irreducible and G-stable, and over Ep it has p extensions ρ that

are pairwise inequivalent but Gal
(

Ep
∣

∣E
)

-conjugate.

While we have not proclaimed the conclusions of this discussion as for-

mal propositions, we shall make use of them in the subsequent sections and

incorporate them in the lemmas proved there.

3. Changing fields

In the second last paragraph, it proved expedient to view an E-representa-

tion of H as an Ep-representation. There are in fact three ways of changing

fields that are important in our context, and it is as well to distinguish them

carefully.

The first was mentioned already in the Introduction: one may take advan-

tage of the fact that, by its very definition, E has an action on V and that

action commutes with the action of H. We have agreed to denote by V E the

EH-module obtained from V in this way. Note that V E consists of the same

elements as V , but we think of it as an E-space rather than an F-space. In

particular, dimE V
E = (dimF V )/|E : F|. It will be important for us that V E

is absolutely irreducible (for EndEH V E = E).

Although we shall not use it here, we mention that a similar change of

fields may be applied to direct sums of copies of V . The endomorphism

ring of such a module is a full matrix algebra over E, and the centre of that

algebra is isomorphic to E. This is so in a very strong sense: the projections

of the direct sum to the direct summands yield specific isomorphisms from

the centre of the matrix algebra to the endomorphism fields of those direct

summands. It is therefore possible to consider such a direct sum an EH-

module in a choice-free way. Note that (V ⊕k)E = (V E)⊕k.

Still more generally, one could change in this way to any subfield of E

(containing F), without necessarily going all the way to E. However, that is

as far as one can force generality: this kind of change only applies to modules
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that are either irreducible or direct sums of isomorphic irreducibles, and

only to subfields of the relevant endomorphism field. Given this limitation,

it would be wasteful to appropriate the notation adopted here on anything

more than a strictly temporary basis.

The second way to change fields is also obvious. It goes in the opposite

direction: we change from a large field to a small one, forgetting the action of

the rest of the large field. This move is not subject to limitations: when we

view an EH-module X as an FH-module and denote the module so obtained

by XF, E could be any field and F any subfield of it. The new module XF

consists of the same elements as the old one, the only difference is that there

is less action on XF than on X. Accordingly, dimF XF = (dimE X)|E : F|.
This way of changing fields is discussed in VII.1.16 of [2], though the notation

used there is different. If E is finite and XF happens to be irreducible, then

E is certainly contained in the endomorphism field of XF so it makes sense

to consider (XF)
E, and then of course (XF)

E = X. Similarly, (V E)F = V .

The third change of fields makes an EH-module from V by forming V ⊗FE.

Given the notation we have already chosen, we are not free to follow Huppert

and Blackburn [2] in denoting this EH-module by VE, or Curtis and Reiner

[1] in denoting it by V E: we shall make do without that kind of shorthand.

Note that dimE(V ⊗F E) = dimF V , and (V ⊗F E)F = V ⊕|E:F|. This move

is also available for any E, F, V , but until the last section we shall only

use it with F finite, V irreducible, and E = EndFH V . In this case, V ⊗F E

is a direct sum of |E : F| pairwise nonisomorphic but Gal
(

E
∣

∣F
)

-conjugate,

absolutely irreducible modules:

V ⊗F E = V1 ⊕ · · · ⊕ V|E:F|.

(In Chapter VII of [2], first combine 1.15 with 1.18b to justify this without

the adjective ‘absolutely’, then use 1.12 and 1.4b to show that each EndEH Vi

is E.) As (V ⊗F E)F ∼= V ⊕|E:F|, each (Vi)F is isomorphic to V .

It is important to understand that although E has a natural action on V ,

in forming V ⊗F E only the action of the subfield F is used, the action of
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the rest of E is ignored. The EH-module V E made from V by exploiting the

natural action of E is isomorphic to one of the irreducible direct summands Vi

of V ⊗F E, but which summand that is depends on which F-isomorphism we

choose from the ‘concrete’ copy EndFH V of E to the ‘abstract’ copy (with the

natural action on V forgotten) that was used in forming the tensor product

V ⊗F E. Having chosen such an isomorphism, we are still free to choose the

numbering of the Vi. It will be convenient to coordinate these choices so that

V1
∼= V E.

The G-stability of V obviously implies that V ⊗F E is G-stable, but of

course it does not imply that V E, or any one of the Vi, is G-stable. However,

all Galois conjugates of G-stable H-modules are obviously G-stable, so if one

of the Vi is G-stable then so are all the others. What we called the stable but

not absolutely stable case could therefore have been defined as that in which

V is G-stable but at least one of the Vi is not (and so not one of the Vi is)

G-stable. Similarly, the absolutely stable case is that in which at least one of

the Vi is (and therefore all of the Vi are) G-stable.

4. The stable but not absolutely stable case

We are now ready to prove part (a) of the Theorem under the assumption

that F is finite. The notation of the previous section will be retained; in

particular, the Vi are numbered so that V1
∼= V E. The assumption particular

to part (a) is that V is G-stable but V E and V1 are not.

The first point to note is that, by Clifford’s Theorem, the induced EG-

module V1↑ is irreducible. The second point is that the G-stability of V ⊗FE

implies that conjugation action by G permutes (the isomorphism types of)

the Vi; as V1 is not G-stable, this action is nontrivial, so it follows that the

kernel of the action is precisely H.

The Galois group Gal
(

E
∣

∣F
)

permutes the set of the (isomorphism types

of the) Vi regularly, and this action commutes with the action of G. Since a

regular abelian group is its own centralizer in the ambient symmetric group,
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it follows that G/H acts just like a subgroup of Gal
(

E
∣

∣F
)

. Since Gal
(

E
∣

∣F
)

is cyclic, it has at most one subgroup of order p. We conclude that it does

have one, and that G/H acts as that unique subgroup. Call that subgroup Γ,

and let Ep be the subfield of E that consists of the elements fixed by Γ: this

contains F, and is the only subfield of E with the property that |E : Ep| = p.

Since a character induced from a normal subgroup vanishes outside that

normal subgroup, the previous paragraph proves that the nonzero values of

the character of G afforded by the irreducible EG-module V1↑ are the same

as the nonzero values of the sum of the Γ-conjugates of the character of H

afforded by V1. It follows that all values of the character of G afforded by

V1↑ are fixed by Γ and so lie in Ep. Since nothing more in the Galois group

fixes (setwise) the set of isomorphism types of the G-conjugates of V1, this

set of character values cannot lie in any proper subfield of Ep that contains F.

That is, the character values (together with F) generate Ep. By a theorem of

Brauer (VII.1.17 in [2]), there is an EpG-module X such that X⊗Ep
E ∼= V1↑.

Set U = XF; by the last sentence of VII.1.16e in [2], this U is irreducible.

We know that (V1)F ∼= V , so (V1↑)F = (V1)F↑ ∼= V ↑. On the other hand,

(V1↑)Ep
∼= X⊕p, so (V1↑)F ∼= U⊕p. This proves that V ↑ ∼= U⊕p, and therefore

the restriction U↓ must be isomorphic to V . As we have seen before, any

FG-module whose restriction to H is V must be a submodule of V ↑ and

therefore must be isomorphic to U . We have proved the first sentence of the

following.

Lemma 1. If F is finite and V is G-stable but V E is not, then there is a

unique isomorphism class of FG-modules U such that U↓ ∼= V , and in this

case V ↑ ∼= U⊕p. Also, |E : F| is divisible by p, and EndFG U = Ep where Ep

is the unique subfield of E that contains F and is such that |E : Ep| = p.

To prove the last claim, argue as follows: Ep is a maximal subfield of E; it

commutes with the action of G on U (by the definition of U in terms of X),

nothing more than E can commute with the action of FH (according to the

definition of E), and E itself does not commute with the action of G (because
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V E is not G-stable).

The example mentioned in the Introduction shows that the case discussed

here can occur regardless of whether the characteristic of F is the same as

the index p, and can occur even when H is cyclic (and so G is metacyclic).

It cannot occur if G is abelian, for then α must centralize Hσ and E is the

F-linear span of Hσ.

5. The absolutely stable case in characteristic p

Lemma 2. If F is finite and V E is G-stable, and if the characteristic of F

is the same as the index p of H in G, then there is a unique isomorphism

class of FG-modules U such that U↓ ∼= V . The endomorphism field of U is

E, and V ↑ is uniserial of composition length p, with all composition factors

isomorphic to U .

Proof. The first sentence of this lemma was proved in Section 2, using that

in a finite field of characteristic p every element has a unique pth root, and

the first statement of the second sentence is also evident from the argument

given there.

Towards proving the statement concerning V ↑, recall (for example from

VII.4.15b in [2]) that, loosely speaking, V ↑ = U↓↑ = U ⊗ Y where Y is the

regular F(G/H)-module. Consider the ‘outer tensor product’ U ♯ Y , that is,

U ⊗ Y viewed as a (G × (G/H))-module: strictly speaking, the G-module

U ⊗Y is the restriction of U ♯Y along the ‘diagonal embedding’ g 7→ (g, gH)

of G in G× (G/H). If 〈c〉 is a cyclic group of order p, then multiplication by

1 − c is an endomorphism of the regular F〈c〉-module, such that the images

of the powers of this endomorphism form the unique composition series in

that module. Thus Y has an endomorphism, θ say, such that the images of

the powers of θ form a composition series with all factors 1-dimensional and

trivial. Then 1⊗ θ is an endomorphism of U ♯Y , and therefore also of V ↑. It
follows that the images of V ↑ under the powers of 1⊗ θ form a composition

series for V ↑ with all factors isomorphic to U . By Nakayama Reciprocity,
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every FG-module whose restriction to H is V must be a homomorphic image

of V ↑; we have just seen that all composition factors of V ↑ are isomorphic

to U ; hence (up to isomorphism) U is the only FG-module with U↓ ∼= V .

Nakayama Reciprocity also tells us that HomFG(V ↑, U) ∼= EndFH V , and

we already know that EndFH V = EndFG U , so it follows that there is only

one submodule in V ↑ with quotient isomorphic to U : thus V ↑ has only one

maximal submodule. Then each term of the given composition series of V ↑,
being a homomorphic image of V ↑, has only one maximal submodule, and

therefore this is the only composition series in V ↑. �

Examples. The simplest examples are the cyclic groups G of order p. For

an example with faithful U , take F = GF (3), G = SL(2, 3), and V the

restriction of the natural FG-module.

6. The absolutely stable case in characteristic different from p

Suppose now that the characteristic of F is not the index p of H in G.

Recall that in this case we agreed to write E
( p√

1
)

for the field obtained from

E by adjoining a primitive pth root of 1, and s for the degree of this field

over E; also, we noted that s is a divisor of p− 1. For finite F, parts (c) and

(d) of the Theorem may be paraphrased as follows.

Lemma 3. Suppose that F is finite, V E is G-stable, and the characteristic of

F is not p.

(c) If s > 1, then there is a unique isomorphism type of FG-modules U

such that U↓ ∼= V ; the endomorphism field of U is E, and

V ↑ ∼= U ⊕W1 ⊕ · · · ⊕W(p−1)/s

where the Wj are pairwise nonisomorphic irreducible FG-modules, each with

endomorphism field E
( p√

1
)

, each with Wj↓ ∼= V ⊕s.

(d′) If s = 1 and if there exist FG-modules U such that U↓ ∼= V , then these

U form p distinct isomorphism classes. If U1, . . . ,Up are representatives
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of these isomorphism classes, then V ↑ ∼= U1 ⊕ · · · ⊕ Up, and each Uj has

endomorphism field E.

(d′′) If s = 1 but there is no FG-module U such that U↓ ∼= V , then V ↑
is irreducible and its endomorphism field is the (unique) degree p extension

of E.

Examples. In each of the examples to be given here, V can be any faithful

irreducible FH-module. For part (c), let F be GF (2), G cyclic of order 45,

and p = 5; for part (d′), let F be GF (2) or GF (4), G cyclic of order 63, and

p = 3; for part (d′′), let F be GF (2) or GF (4), G cyclic of order 9, and p = 3.

In general, if F = GF (q), F
( p√

1
)

= GF (qt), and k is any divisor of t other

than 1, the cyclic group G of order p(qt/k − 1) gives an example of case (c)

with s = k. [The example with G of order 45 given above was chosen a little

more complicated to show also that E need not lie in F
( p√

1
)

.] In parts (d′)

and (d′′), the two choices of F above illustrate that it is immaterial whether

F itself contains a primitive pth root of 1.

In the light of the Section 2, it is easy to see that Lemma 3 is implied by

the following two results.

Lemma 4. If F is finite and U is an FG-module such that U↓ = V and

EndFG U = E, then V ↑ ∼= U ⊕W1 ⊕ · · · ⊕W(p−1)/s where U and the Wj are

pairwise nonisomorphic, and each Wj is irreducible with endomorphism field

E
( p√

1
)

and Wj↓ ∼= V ⊕s.

Lemma 5. If F is finite and there is no FG-module U such that U↓ ∼= V ,

then V ↑ is irreducible and |EndFG(V ↑) : E| = p.

Proof of Lemma 4. As in the proof of Lemma 2, we use that V ↑ = U ⊗ Y

where Y is the regular F(G/H)-module and U ⊗ Y is the restriction of

the F(G × (G/H))-module U ♯ Y along the diagonal embedding of G into

G× (G/H). Write the image of that embedding as diagG, noting that it is

a normal subgroup (indeed, it is even a direct complement to 1× (G/H)) in
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G× (G/H), and that

(G× 1) ∩ (diagG) = H × 1 and (G× 1)(diagG) = G× (G/H).

The restriction of U ♯ Y to G× 1 is just U⊕p. As EndFG U = EndFH(U↓),
we also have that EndFG(U

⊕p) = EndFH(U⊕p↓): that is, each (H × 1)-

endomorphism of U ♯ Y is a (G× 1)-endomorphism. In view of the last dis-

played equations, this implies that each (diagG)-endomorphism of U ♯Y is a

(G×(G/H))-endomorphism: that is, EndFG(U⊗Y ) = EndF(G×(G/H))(U♯Y ).

We know that EndFG U = E, while EndF(G/H) Y = F(G/H) because the en-

domorphism ring of the regular module for an abelian group is always the

group algebra itself. Thus

EndFG(V ↑) = EndFG(U ⊗ Y )

= EndF(G×(G/H))(U ♯ Y )

= (EndFG U)⊗F (EndF(G/H) Y ) by VII.9.16b in [2]

= E⊗F F(G/H)

= E(G/H)

= E⊕ E
( p√

1
)

⊕ · · · ⊕ E
( p√

1
)

with 1 + (p− 1)/s summands

where the last line comes from the known structure of group algebras of

cyclic groups. By VII.9.4 of [2], V ↑ is completely reducible. The submod-

ule structure of a completely reducible module can always be read off the

endomorphism ring of the module. In the present case the conclusion may

be put as follows: V ↑ is a direct sum of 1 + (p − 1)/s pairwise nonisomor-

phic irreducibles, one with endomorphism field E, each of the others with

endomorphism field E
( p√

1
)

.

We know that U is one of the direct summands of V ↑; denote the other

irreducible direct summands by W1, . . . ,W(p−1)/s, so EndFG Wj = E
( p√

1
)

.

From V ↑↓ = V ⊕p we see that Wj↓ ∼= V ⊕t(j) with integers t(j) such that
∑

t(j) = p− 1. What remains to show is that t(1) = · · · = t((p− 1)/s) = s.
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The endomorphism field of Wj is a subring in the endomorphism ring of Wj↓,
and the latter is the t(j)× t(j) matrix ring over E. A minimal right ideal of

that matrix ring may therefore be viewed as a vector space over E
( p√

1
)

, so

t(j) must be a multiple of s. Here all we need from this is that t(j) ≥ s, for

then
∑

t(j) = p− 1 implies that each t(j) is equal to s. �

Proof of Lemma 5. Let Ep denote the (unique) degree p extension of E. If

V E were the restriction of an EG-module X, then XF could serve as the U

whose non-existence is assumed: thus there can be no such X. Accordingly,

the second last paragraph of Section 2 can be applied with E and V E in

place of F and V : there exist EpG-modules X1, . . . , Xp that are pairwise

nonisomorphic but Gal
(

Ep
∣

∣E
)

-conjugate and such that each Xi↓ is V E⊗EE
p.

It follows by reciprocity that (V E ⊗E Ep)↑ has a homomorphism onto
⊕

Xi,

and then by dimension comparison (V E ⊗E Ep)↑ ∼=
⊕

Xi. The point we

need from this is that no proper nonzero submodule of (V E⊗EE
p)↑ can have

Gal
(

Ep
∣

∣E
)

-invariant isomorphism type.

Of course (V E ⊗E Ep)↑ = (V E↑) ⊗E Ep. If X is any submodule of V E↑,
then X ⊗E Ep is a submodule of (V E↑) ⊗E Ep and the isomorphism type of

X ⊗E Ep is certainly Gal
(

Ep
∣

∣E
)

-invariant. Thus X cannot be proper and

nonzero: V E↑ must be irreducible. Note, however, that V E↑ is not absolutely

irreducible.

When an irreducible EG-module is viewed as an FG-module, it is a di-

rect sum of isomorphic irreducible summands (see VII.1.16d in [2]). As

(V E↑)F = V ↑, therefore V ↑ = W⊕t for some irreducible W and some in-

teger t. Because (W↓)⊕t = V ↑↓ = V ⊕p and p is prime, we can only have

t = 1 or t = p. The second of these alternatives is excluded by the hypothesis

that V is not the restriction of any FG-module, and t = 1 means that V ↑ is

irreducible, as required.

The endomorphism field of V E↑ is a subring in the endomorphism ring of

V E↑↓ which is the p× p matrix ring over E, so (by an argument used in the

last paragraph of the proof of Lemma 4) |EndEG(V
E↑) : E| is a divisor of p.
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This degree cannot be 1, because we have seen that V E↑ is not absolutely ir-

reducible. Thus EndEG(V
E↑) = Ep, and therefore also EndFG(V ↑) = Ep. �

Lemmas 1, 2, 3 together prove the Theorem for finite F.

Remark. If F is algebraically closed, cases (c) and (d′′) do not arise in

Lemma 3, and another theorem of Clifford (51.7 in Curtis and Reiner [1]) is

also available: if V = U↓ then the irreducible direct summands of V ↑ are

precisely the modules obtained by tensoring U with the irreducible F(G/H)-

modules (viewed as FG-modules with kernels containing H). It is not hard

to see that in case (d′) this is true without any assumption on F, and that

it is true even in case (c) provided that E ∩ F
( p√

1
)

= F. The first of the

examples mentioned after the statement of Lemma 3 shows that this pro-

viso is necessary. (The way to avoid the proviso is to consider instead the

(UE ⊗E Y )F with Y ranging through the irreducible E(G/H)-modules.)

7. Infinite fields

Restricting attention to finite fields in the preceding sections was conve-

nient but not really necessary. In prime characteristic, the endomorphism

ring of an irreducible module is always commutative; indeed, it is always a

cyclic extension of the ground field obtained by adjoining a root of 1. This

fact is tied up with a (presumably well-known) general dispensation to the

effect that the theory of completely reducible representations of a finite group

over a field of prime characteristic is always ‘the same’ as over a suitable fi-

nite subfield. In the absence of a convenient reference, we state and prove

this as follows.

Given a field F and a finite group G, write Irr FG for the set of all isomor-

phism types of irreducible (right) FG-modules. Let n be a positive integer,

F a field of prime characteristic, F(n) the (finite) subfield of the algebraic

closure of F generated by the roots of xn − 1, and F(n) = F(n) ∩ F.

Lemma 6. If G is a finite group of exponent dividing n, then U 7→ U ⊗F(n)
F
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is a bijection from Irr F(n)G to Irr FG.

We know (see VII.1.12 in [2]) that EndFG(U⊗F(n)
F) = (EndF(n)G U)⊗F(n)

F,

thus Lemma 6 implies that the endomorphism ring of each irreducible FG-

module is a commutative field obtained by adjoining to F a root of 1. It is

clear that the bijections described in Lemma 6 commute with induction and

restriction. It follows that the earlier lemmas of this paper hold not only for

finite F but for all F of nonzero characteristic. There is one slight change

of wording necessary: in part (d′′) of Lemma 3, the endomorphism field of

V ↑ has to be identified as the unique degree p extension of E obtainable by

adjoining roots of 1. (Note that no field can ever have more than one degree

p extension of this kind. When E has no such extension, we cannot be in case

(d′′) of Lemma 3. On the other hand, regardless of whether E has such an

extension, if E is not algebraic over its prime subfield then it may also have

degree p extensions whose finite subfields are all contained in E.) In the case

of Lemma 2, in order to see that when V is an irreducible F(n)H-module such

that V ↑ is uniserial then (V ⊗F(n)
F)↑ is also uniserial, we cannot rely simply

on Lemma 6 and Lemma 2. Instead, we have to argue that, given the rest of

Lemma 2, the proof of uniseriality never used the finiteness assumption. As

the Lemmas 1, 2, 3 together proved the finite fields case of the Theorem, we

have now proved the Theorem in its full generality.

For the proof of Lemma 6, it suffices to show that (EndF(n)G U)⊗F(n)
F is

a field. Indeed, U ⊗F(n)
F is completely reducible (by VII.1.8 of [2]), so if its

endomorphism ring is a field then it must be irreducible. Given this, the map

defined in the lemma is one-to-one by VII.1.22 of [2], and surjective because,

by VII.1.5 of [2], the largest semisimple quotient of the group algebra FG

may be obtained from that of F(n)G by tensoring over F(n) with F.

By VII.2.6 in Huppert and Blackburn [2], F(n) is a splitting field for G.

Let U ∈ Irr F(n)G. The irreducible direct summands of U ⊗F(n)
F(n) are all

absolutely irreducible and therefore their endomorphism fields are all equal to

F(n). The direct sum of these endomorphism fields is EndF(n)G(U⊗F(n)
F(n)),
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and in turn this is (EndF(n)G U)⊗F(n)
F(n). We see from VII.1.4b of [2] that

the latter algebra can only be a direct sum of copies of F(n) if EndF(n)G U

is isomorphic to a subfield of F(n). We conclude that the unique copy of

EndF(n)G U in the algebraic closure of F intersects F precisely in F(n). In

turn, this implies that (EndF(n)G U)⊗F(n)
F is a field, as required. �

We conclude by noting that over fields of characteristic 0 that are not al-

gebraically closed, the general picture is quite different. The proofs we used

break down, and some of the conclusions we reached make no sense (because

the endomorphism ring of an irreducible need not be a field). Worse still, even

conclusions that would make sense can fail to hold. For example, the The-

orem implies that in prime characteristic V ↑ is either multiplicity-free (that

is, a direct sum of pairwise nonisomorphic irreducibles) or homogeneous (in

the sense of all compositions factors having the same isomorphism type).

By contrast, if F is a subfield of the field of real numbers, the representa-

tion of SL(2, 3) induced from the unique faithful irreducible (4-dimensional)

representation of Q8 over F involves two irreducibles of SL(2, 3), one with

multiplicity 1 and the other with multiplicity 2.
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