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of the ring of integers modulo n

S.P. Glasby

Let n be an integer > 1, and let Zn denote the quotient ring Z/nZ. The group
Un of units of Zn occurs commonly in group theory as the automorphism group
Aut(Cn) of the cyclic group Cn of order n, and number theory as the Galois group
of the extension Q(e2πi/n) : Q. The purpose of this note is to prove concisely some
elementary facts concerning generators for Un and to mention a very curious result
which is true for all odd primes less than 107, except for 40 487. Some facts like
Theorem 2 are known (see [2, Theorem 2.40]) but are not widely known, or are
proved awkwardly, while others like Theorem 4(b), (c) appear not to be known.
If p is an odd prime, then Upi is cyclic, so Upi = 〈ai + piZ〉 for some ai ∈ Z. It
is less well-known that show that ai may be chosen to be independent of i. This
result is generalized in Theorem 4 to Un. In addition, a rather surprising connection
between the least positive primitive roots modulo an odd prime p, and primitive
roots modulo pi for i ≥ 2, is mentioned in Theorem 3.

It is straightforward to prove that Un is an abelian group and that k+ nZ ∈ Un

if and only if gcd(k, n) = 1. If φ(n) denotes the order of Un, and p is prime, then
φ(pk) = pk−1(p−1). Suppose that n = n1 · · ·nr where the ni are powers of distinct
primes. The Chinese Remainder Theorem gives an explicit (ring) isomorphism
Zn

∼= Zn1
×· · ·×Znr

, which restricts to a (group) isomorphism Un
∼= Un1

×· · ·×Unr
.

Therefore φ(n) = φ(n1) · · ·φ(nr). If a+nZ ∈ Un has order k, we write ordn(a) = k.

Lemma 1. Let p be a prime divisor of a positive integer r. If p = 2 assume 4
divides r. If ordr(a) = k and ordrp(a) = kp, then ordrp2(a) = kp2 (and hence
ordrpi(a) = kpi for i > 2).

Proof. First note that gcd(a, r) = 1 implies gcd(a, rpi) = 1 for i ≥ 0. It suffices to
prove the result for i = 2, for we may then ‘bootstrap’ by replacing r by rp. The
above formula for φ gives φ(rp) = pφ(r). Hence the kernel of the group epimorphism
Urp → Ur given by x + rpZ 7→ x + rZ, comprises the p elements {1 + rx + rpZ |
0 ≤ x < p}. Since ordr(a) = k and ordrp(a) = kp, so (a + rpZ)k = 1 + rx + rpZ
where p does not divide x. Suppose ak = 1 + rx+ rpy where y ∈ Z. Applying the
binomial theorem twice and noting that p divides

(

p
i

)

if 0 < i < p, shows

akp = (1 + rx+ rpy)p ≡ (1 + rx)p ≡ 1 + rpx (mod rp2).

(When p = 2, the last step assumes p2 divides r.) Thus ordrp2(a) is a multiple of
kp, is not equal to kp, and divides kp2. Hence ordrp2(a) = kp2 as desired. �
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Theorem 2. (a) Let p be an odd prime and suppose that Up = 〈a + pZ〉. Then
either Upi = 〈a+ piZ〉 for i ≥ 1, or for any x not divisible by p, Upi = 〈a(1+ px)+

piZ〉 for i ≥ 1.

(b) If a ≡ 5 (mod 8), then U2i = 〈a + 2iZ〉
.
× 〈 − 1 + 2iZ〉 is an internal direct

product for i ≥ 1.

Proof. (a) If ordp2(a) = p(p−1), then it follows from Lemma 1 and ordp(a) = p−1
that ordpi(a) = pi−1(p − 1) for i ≥ 1. Otherwise ordp2(a) = p − 1, and for any
x not divisible by p, a(1 + px) + p2Z has order p(p − 1). Similarly, by Lemma 1
ordpi(a(1 + xp)) = pi−1(p− 1) for i ≥ 1.

(b) Since ord4(a) = 1 and ord8(a) = 2 by Lemma 1, ord2i(a) = 2i−2 for i ≥ 3.

Therefore, (a+2iZ)2
i−3

= 1+2i−1+2iZ for i ≥ 3, and so 〈a+2iZ〉∩ 〈−1+2iZ〉 is

trivial. As U2i has order 2
i−1, it follows that U2i = 〈a+2iZ〉

.
× 〈− 1+ 2iZ〉. (Note

that 〈a+ 2iZ〉 is trivial if i = 1, 2.) �

Let p be a prime > 2, and let ap denote the least positive primitive root modulo p.
Now ap + p2Z has order p − 1 or p(p − 1), and I guessed initially that both cases
would occur frequently. I wrote a short program using Magma [1] to investigate
the frequency of each case. After a few minutes, Magma showed that ordp2(ap) =
p(p−1) for all odd primes p < 104. Before attempting to prove the conjecture that
ordpi(ap) = pi−1(p−1) for all odd primes p, I thought it prudent to investigate some
probabilities. We know that (ap + p2Z)p−1 = 1 + px + p2Z and that ordp2(ap) =
p(p− 1) if and only if p does not divide x. Although x is determined once we know
ap, for convenience assume that x is equally likely to lie in any of the p congruence
classes modulo p, and hence that ordp2(ap) = p(p− 1) with probability 1− 1/p. If
pi denotes the ith prime, and the order of api

+ p2iZ is assumed to be independent
of the previous primes, then this heuristic reasoning gives the probability that all
odd primes < n have order p(p − 1) is P (n) =

∏

(1 − 1/p) where the product
ranges over odd primes < n. Since P (104) ≈ 0.12, we should perhaps think twice
before conjecturing that ordpi(ap) = φ(pi) for all odd primes p, and i ≥ 1. It is
easy to prove that (1− 1/2)P (n) < (logn)−1 (see [2, p.29]). Hence P (∞) diverges
(very slowly) to zero. Thus the above (admittedly tenuous heuristic) argument,
suggests that counterexamples should exist, and furthermore that they should be
large. I used Magma to search for counterexamples in the range 104 ≤ p ≤ 107.
After approximately 12 CPU days (!) I was very surprised to see that precisely one
counterexample was found, namely p = 40 487 and ap = 5.

The following theorem summarizes some computational findings.

Theorem 3. For each prime p let ap be the least positive integer, and bp the greatest
negative integer satisfying Up = 〈ap + pZ〉 = 〈bp + pZ〉. If 2 < p < 107, then
Upi = 〈ap + piZ〉 for all i ≥ 1 except when p = 40 487; and Upi = 〈bp + piZ〉 for all
i ≥ 1 except when p = 3, 11 or 3 511.

While the assumption p < 107 in Theorem 3 may be superfluous, the following
remark may cast some doubt on this. If the requirement that ap be least positive
were dropped, then examples abound with ordp2(ap) = ordp(ap) = p − 1. For
example, p = 29, ap = 14; p = 37, ap = 18; p = 43, ap = 19 etc. The prime
3 511 arises in connection with the ‘first case’ of Fermat’s last theorem. In 1909
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A. Wieferich proved that if p is an odd prime and xp + yp = zp has a solution in
the integers with xyz not divisible by p, then 2p−1 ≡ 1 (mod p2). There are only
two primes less than 107 satisfying this condition, namely 1 093 and 3 511.

Note that if m > 1 is a power of 3 and n > 1 is a power of 7, then Um = 〈2+mZ〉
and Un = 〈3 + nZ〉. Although Umn is generated by 2 elements, it does not equal
〈2 +mnZ, 3 +mnZ〉, as 3 +mnZ is not even a unit! Note that if a and b satisfy
a ≡ 2 (mod m), a ≡ 1 (mod n) and b ≡ 1 (mod m), b ≡ 3 (mod n), then Umn =
〈a + mnZ, b + mnZ〉. However, it is not clear that a and b can be chosen to be
independent of m and n. In fact, Umn = 〈29 +mnZ, 52 +mnZ〉.

Let d(G) denote the minimal number of generators of a finite abelian group G.

Theorem 4. (a) If n = n1 · · ·nr where n1, . . . , nr are pairwise coprime, then
d(Un) = d(Un1

)+ · · ·+d(Unr
). Furthermore, if n is a prime-power, then d(Un) = 2

if 8 divides n, and 1 otherwise.
(b) Let p1, . . . , pr be distinct odd primes. Let k1, . . . , kr be arbitrary positive in-

tegers and set n = pk1

1 · · · pkr
r . If ai ∈ Z satisfies ordp2

i
(ai) = pi(pi − 1) and

ordpj
(ai) = 1 for j 6= i, then d(Un) = r and Un = 〈a1 + nZ, . . . , ar + nZ〉.

(c) Let p1 = 2, p2, . . . , pr be distinct primes. Let k1, . . . , kr be arbitrary positive

integers and set n = pk1

1 · · · pkr
r . Let ai ∈ Z satisfy a0 ≡ 5 (mod 8), a1 ≡ −1

(mod 8), ordp2

i
(ai) = pi(pi − 1) for i ≥ 2 and ordpj

(ai) = 1 if pj 6= pi (set p0 = 2).

Then Un = 〈a0 + nZ, a1 + nZ, . . . , ar + nZ〉. If 8 divides n, then d(Un) = r + 1,
otherwise d(Un) = r and the generator a0 + nZ is superfluous.

Proof. (a) It suffices to prove the theorem when the ni are prime-powers. By
the Chinese Remainder Theorem Un

∼= Un1
× · · · × Unr

, and so d(Un) ≤ d(Un1
) +

· · ·+ d(Unr
). The reverse inequality follows from the observation that if the direct

product of k copies of C2 is a subgroup of an abelian group G, then d(G) ≥ k. Note
that if Ω(G) denotes the subgroup {g ∈ G | g2 = 1} of G, then d(Uni

) = d(Ω(Uni
)).

It follows by considering dimensions of vector spaces that

d(Ω(Un1
)× · · · × Ω(Unr

)) = d(Ω(Un1
)) + · · ·+ d(Ω(Unr

)),

and hence that d(Un) ≥ d(Un1
) + · · ·+ d(Unr

).

(b) Let ni = pki

i . Then ordni
(ai) = φ(ni) for each i. However, it does not follow

from this that Un = 〈a1 + nZ, . . . , ar + nZ〉. Without loss of generality assume
that p1 < p2 < · · · < pr. If j 6= i, then ordpj

(ai) = 1, so ordnj
(ai) divides nj

(indeed, it divides nj/pj). Let ei = ni+1 · · ·nr. If j > i, then ordnj
(aeii ) = 1, and

since ei is coprime to φ(ni), so ordni
(aeii ) = ordni

(ai) = φ(ni). It follows now that
Un = 〈ae11 + nZ, . . . , aerr + nZ〉 and hence Un = 〈a1 + nZ, . . . , ar + nZ〉.

(c) This follows from Theorems 2(b) and 4(a) by arguing as in (b) above. �

Suppose that p1, . . . , pr are distinct (odd) primes and that pi does not divide
pj − 1 for all i 6= j. Then a stronger conclusion than that in Theorem 4(b) holds.

Given n = pk1

1 · · · pkr
r , set ni = pki

i and fi = n/ni. Then arguing as in the proof of

Theorem 4(b), ordni
(afii ) = ordni

(ai) = φ(ni), and ordnj
(afii ) = 1 if i 6= j. Hence,

Un is the internal direct product

Un = 〈af11 + nZ〉
.
× · · ·

.
× 〈afrr + nZ〉

where Uni
= 〈afii + niZ〉 ∼= 〈afii + nZ〉.
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