# On generators for the group of units of the ring of integers modulo $n$ 

S.P. Glasby

Let $n$ be an integer $>1$, and let $\mathbb{Z}_{n}$ denote the quotient ring $\mathbb{Z} / n \mathbb{Z}$. The group $U_{n}$ of units of $\mathbb{Z}_{n}$ occurs commonly in group theory as the automorphism group Aut $\left(C_{n}\right)$ of the cyclic group $C_{n}$ of order $n$, and number theory as the Galois group of the extension $\mathbb{Q}\left(e^{2 \pi i / n}\right): \mathbb{Q}$. The purpose of this note is to prove concisely some elementary facts concerning generators for $U_{n}$ and to mention a very curious result which is true for all odd primes less than $10^{7}$, except for 40487 . Some facts like Theorem 2 are known (see [2, Theorem 2.40]) but are not widely known, or are proved awkwardly, while others like Theorem 4(b), (c) appear not to be known. If $p$ is an odd prime, then $U_{p^{i}}$ is cyclic, so $U_{p^{i}}=\left\langle a_{i}+p^{i} \mathbb{Z}\right\rangle$ for some $a_{i} \in \mathbb{Z}$. It is less well-known that show that $a_{i}$ may be chosen to be independent of $i$. This result is generalized in Theorem 4 to $U_{n}$. In addition, a rather surprising connection between the least positive primitive roots modulo an odd prime $p$, and primitive roots modulo $p^{i}$ for $i \geq 2$, is mentioned in Theorem 3.

It is straightforward to prove that $U_{n}$ is an abelian group and that $k+n \mathbb{Z} \in U_{n}$ if and only if $\operatorname{gcd}(k, n)=1$. If $\phi(n)$ denotes the order of $U_{n}$, and $p$ is prime, then $\phi\left(p^{k}\right)=p^{k-1}(p-1)$. Suppose that $n=n_{1} \cdots n_{r}$ where the $n_{i}$ are powers of distinct primes. The Chinese Remainder Theorem gives an explicit (ring) isomorphism $\mathbb{Z}_{n} \cong \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{r}}$, which restricts to a (group) isomorphism $U_{n} \cong U_{n_{1}} \times \cdots \times U_{n_{r}}$. Therefore $\phi(n)=\phi\left(n_{1}\right) \cdots \phi\left(n_{r}\right)$. If $a+n \mathbb{Z} \in U_{n}$ has order $k$, we write $\operatorname{ord}_{n}(a)=k$.

Lemma 1. Let $p$ be a prime divisor of a positive integer $r$. If $p=2$ assume 4 divides $r$. If $\operatorname{ord}_{r}(a)=k$ and $\operatorname{ord}_{r p}(a)=k p$, then $\operatorname{ord}_{r p^{2}}(a)=k p^{2}$ (and hence $\operatorname{ord}_{r p^{i}}(a)=k p^{i}$ for $i>2$ ).

Proof. First note that $\operatorname{gcd}(a, r)=1$ implies $\operatorname{gcd}\left(a, r p^{i}\right)=1$ for $i \geq 0$. It suffices to prove the result for $i=2$, for we may then 'bootstrap' by replacing $r$ by $r p$. The above formula for $\phi$ gives $\phi(r p)=p \phi(r)$. Hence the kernel of the group epimorphism $U_{r p} \rightarrow U_{r}$ given by $x+r p \mathbb{Z} \mapsto x+r \mathbb{Z}$, comprises the $p$ elements $\{1+r x+r p \mathbb{Z} \mid$ $0 \leq x<p\}$. Since $\operatorname{ord}_{r}(a)=k$ and $\operatorname{ord}_{r p}(a)=k p$, so $(a+r p \mathbb{Z})^{k}=1+r x+r p \mathbb{Z}$ where $p$ does not divide $x$. Suppose $a^{k}=1+r x+r p y$ where $y \in \mathbb{Z}$. Applying the binomial theorem twice and noting that $p$ divides $\binom{p}{i}$ if $0<i<p$, shows

$$
a^{k p}=(1+r x+r p y)^{p} \equiv(1+r x)^{p} \equiv 1+r p x \quad\left(\bmod r p^{2}\right) .
$$

(When $p=2$, the last step assumes $p^{2}$ divides $r$.) Thus $\operatorname{ord}_{r p^{2}}(a)$ is a multiple of $k p$, is not equal to $k p$, and divides $k p^{2}$. Hence $\operatorname{ord}_{r p^{2}}(a)=k p^{2}$ as desired.

Theorem 2. (a) Let $p$ be an odd prime and suppose that $U_{p}=\langle a+p \mathbb{Z}\rangle$. Then either $U_{p^{i}}=\left\langle a+p^{i} \mathbb{Z}\right\rangle$ for $i \geq 1$, or for any $x$ not divisible by $p$, $U_{p^{i}}=\langle a(1+p x)+$ $\left.p^{i} \mathbb{Z}\right\rangle$ for $i \geq 1$.
(b) If $a \equiv 5(\bmod 8)$, then $U_{2^{i}}=\left\langle a+2^{i} \mathbb{Z}\right\rangle \dot{\times}\left\langle-1+2^{i} \mathbb{Z}\right\rangle$ is an internal direct product for $i \geq 1$.

Proof. (a) If $\operatorname{ord}_{p^{2}}(a)=p(p-1)$, then it follows from Lemma 1 and $\operatorname{ord}_{p}(a)=p-1$ that $\operatorname{ord}_{p^{i}}(a)=p^{i-1}(p-1)$ for $i \geq 1$. Otherwise $\operatorname{ord}_{p^{2}}(a)=p-1$, and for any $x$ not divisible by $p, a(1+p x)+p^{2} \mathbb{Z}$ has order $p(p-1)$. Similarly, by Lemma 1 $\operatorname{ord}_{p^{i}}(a(1+x p))=p^{i-1}(p-1)$ for $i \geq 1$.
(b) Since $\operatorname{ord}_{4}(a)=1$ and $\operatorname{ord}_{8}(a)=2$ by Lemma 1, $\operatorname{ord}_{2^{i}}(a)=2^{i-2}$ for $i \geq 3$. Therefore, $\left(a+2^{i} \mathbb{Z}\right)^{2^{i-3}}=1+2^{i-1}+2^{i} \mathbb{Z}$ for $i \geq 3$, and so $\left\langle a+2^{i} \mathbb{Z}\right\rangle \cap\left\langle-1+2^{i} \mathbb{Z}\right\rangle$ is trivial. As $U_{2^{i}}$ has order $2^{i-1}$, it follows that $U_{2^{i}}=\left\langle a+2^{i} \mathbb{Z}\right\rangle \dot{\times}\left\langle-1+2^{i} \mathbb{Z}\right\rangle$. (Note that $\left\langle a+2^{i} \mathbb{Z}\right\rangle$ is trivial if $i=1,2$.)

Let $p$ be a prime $>2$, and let $a_{p}$ denote the least positive primitive root modulo $p$. Now $a_{p}+p^{2} \mathbb{Z}$ has order $p-1$ or $p(p-1)$, and I guessed initially that both cases would occur frequently. I wrote a short program using Magma [1] to investigate the frequency of each case. After a few minutes, Magma showed that $\operatorname{ord}_{p^{2}}\left(a_{p}\right)=$ $p(p-1)$ for all odd primes $p<10^{4}$. Before attempting to prove the conjecture that $\operatorname{ord}_{p^{i}}\left(a_{p}\right)=p^{i-1}(p-1)$ for all odd primes $p$, I thought it prudent to investigate some probabilities. We know that $\left(a_{p}+p^{2} \mathbb{Z}\right)^{p-1}=1+p x+p^{2} \mathbb{Z}$ and that $\operatorname{ord}_{p^{2}}\left(a_{p}\right)=$ $p(p-1)$ if and only if $p$ does not divide $x$. Although $x$ is determined once we know $a_{p}$, for convenience assume that $x$ is equally likely to lie in any of the $p$ congruence classes modulo $p$, and hence that $\operatorname{ord}_{p^{2}}\left(a_{p}\right)=p(p-1)$ with probability $1-1 / p$. If $p_{i}$ denotes the $i$ th prime, and the order of $a_{p_{i}}+p_{i}^{2} \mathbb{Z}$ is assumed to be independent of the previous primes, then this heuristic reasoning gives the probability that all odd primes $<n$ have order $p(p-1)$ is $P(n)=\prod(1-1 / p)$ where the product ranges over odd primes $<n$. Since $P\left(10^{4}\right) \approx 0.12$, we should perhaps think twice before conjecturing that $\operatorname{ord}_{p^{i}}\left(a_{p}\right)=\phi\left(p^{i}\right)$ for all odd primes $p$, and $i \geq 1$. It is easy to prove that $(1-1 / 2) P(n)<(\log n)^{-1}$ (see [2, p.29]). Hence $P(\infty)$ diverges (very slowly) to zero. Thus the above (admittedly tenuous heuristic) argument, suggests that counterexamples should exist, and furthermore that they should be large. I used Magma to search for counterexamples in the range $10^{4} \leq p \leq 10^{7}$. After approximately 12 CPU days (!) I was very surprised to see that precisely one counterexample was found, namely $p=40487$ and $a_{p}=5$.

The following theorem summarizes some computational findings.
ThEOREM 3. For each prime $p$ let $a_{p}$ be the least positive integer, and $b_{p}$ the greatest negative integer satisfying $U_{p}=\left\langle a_{p}+p \mathbb{Z}\right\rangle=\left\langle b_{p}+p \mathbb{Z}\right\rangle$. If $2<p<10^{7}$, then $U_{p^{i}}=\left\langle a_{p}+p^{i} \mathbb{Z}\right\rangle$ for all $i \geq 1$ except when $p=40487$; and $U_{p^{i}}=\left\langle b_{p}+p^{i} \mathbb{Z}\right\rangle$ for all $i \geq 1$ except when $p=3,11$ or 3511 .

While the assumption $p<10^{7}$ in Theorem 3 may be superfluous, the following remark may cast some doubt on this. If the requirement that $a_{p}$ be least positive were dropped, then examples abound with $\operatorname{ord}_{p^{2}}\left(a_{p}\right)=\operatorname{ord}_{p}\left(a_{p}\right)=p-1$. For example, $p=29, a_{p}=14 ; p=37, a_{p}=18 ; p=43, a_{p}=19$ etc. The prime 3511 arises in connection with the 'first case' of Fermat's last theorem. In 1909
A. Wieferich proved that if $p$ is an odd prime and $x^{p}+y^{p}=z^{p}$ has a solution in the integers with $x y z$ not divisible by $p$, then $2^{p-1} \equiv 1\left(\bmod p^{2}\right)$. There are only two primes less than $10^{7}$ satisfying this condition, namely 1093 and 3511 .

Note that if $m>1$ is a power of 3 and $n>1$ is a power of 7 , then $U_{m}=\langle 2+m \mathbb{Z}\rangle$ and $U_{n}=\langle 3+n \mathbb{Z}\rangle$. Although $U_{m n}$ is generated by 2 elements, it does not equal $\langle 2+m n \mathbb{Z}, 3+m n \mathbb{Z}\rangle$, as $3+m n \mathbb{Z}$ is not even a unit! Note that if $a$ and $b$ satisfy $a \equiv 2(\bmod m), a \equiv 1(\bmod n)$ and $b \equiv 1(\bmod m), b \equiv 3(\bmod n)$, then $U_{m n}=$ $\langle a+m n \mathbb{Z}, b+m n \mathbb{Z}\rangle$. However, it is not clear that $a$ and $b$ can be chosen to be independent of $m$ and $n$. In fact, $U_{m n}=\langle 29+m n \mathbb{Z}, 52+m n \mathbb{Z}\rangle$.

Let $d(G)$ denote the minimal number of generators of a finite abelian group $G$.
ThEOREM 4. (a) If $n=n_{1} \cdots n_{r}$ where $n_{1}, \ldots, n_{r}$ are pairwise coprime, then $d\left(U_{n}\right)=d\left(U_{n_{1}}\right)+\cdots+d\left(U_{n_{r}}\right)$. Furthermore, if $n$ is a prime-power, then $d\left(U_{n}\right)=2$ if 8 divides $n$, and 1 otherwise.
(b) Let $p_{1}, \ldots, p_{r}$ be distinct odd primes. Let $k_{1}, \ldots, k_{r}$ be arbitrary positive integers and set $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$. If $a_{i} \in \mathbb{Z}$ satisfies $\operatorname{ord}_{p_{i}^{2}}\left(a_{i}\right)=p_{i}\left(p_{i}-1\right)$ and $\operatorname{ord}_{p_{j}}\left(a_{i}\right)=1$ for $j \neq i$, then $d\left(U_{n}\right)=r$ and $U_{n}=\left\langle a_{1}+n \mathbb{Z}, \ldots, a_{r}+n \mathbb{Z}\right\rangle$.
(c) Let $p_{1}=2, p_{2}, \ldots, p_{r}$ be distinct primes. Let $k_{1}, \ldots, k_{r}$ be arbitrary positive integers and set $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$. Let $a_{i} \in \mathbb{Z}$ satisfy $a_{0} \equiv 5(\bmod 8), a_{1} \equiv-1$ $(\bmod 8)$, $\operatorname{ord}_{p_{i}^{2}}\left(a_{i}\right)=p_{i}\left(p_{i}-1\right)$ for $i \geq 2$ and $\operatorname{ord}_{p_{j}}\left(a_{i}\right)=1$ if $p_{j} \neq p_{i}\left(\operatorname{set} p_{0}=2\right)$. Then $U_{n}=\left\langle a_{0}+n \mathbb{Z}, a_{1}+n \mathbb{Z}, \ldots, a_{r}+n \mathbb{Z}\right\rangle$. If 8 divides $n$, then $d\left(U_{n}\right)=r+1$, otherwise $d\left(U_{n}\right)=r$ and the generator $a_{0}+n \mathbb{Z}$ is superfluous.

Proof. (a) It suffices to prove the theorem when the $n_{i}$ are prime-powers. By the Chinese Remainder Theorem $U_{n} \cong U_{n_{1}} \times \cdots \times U_{n_{r}}$, and so $d\left(U_{n}\right) \leq d\left(U_{n_{1}}\right)+$ $\cdots+d\left(U_{n_{r}}\right)$. The reverse inequality follows from the observation that if the direct product of $k$ copies of $C_{2}$ is a subgroup of an abelian group $G$, then $d(G) \geq k$. Note that if $\Omega(G)$ denotes the subgroup $\left\{g \in G \mid g^{2}=1\right\}$ of $G$, then $d\left(U_{n_{i}}\right)=d\left(\Omega\left(U_{n_{i}}\right)\right)$. It follows by considering dimensions of vector spaces that

$$
d\left(\Omega\left(U_{n_{1}}\right) \times \cdots \times \Omega\left(U_{n_{r}}\right)\right)=d\left(\Omega\left(U_{n_{1}}\right)\right)+\cdots+d\left(\Omega\left(U_{n_{r}}\right)\right),
$$

and hence that $d\left(U_{n}\right) \geq d\left(U_{n_{1}}\right)+\cdots+d\left(U_{n_{r}}\right)$.
(b) Let $n_{i}=p_{i}^{k_{i}}$. Then $\operatorname{ord}_{n_{i}}\left(a_{i}\right)=\phi\left(n_{i}\right)$ for each $i$. However, it does not follow from this that $U_{n}=\left\langle a_{1}+n \mathbb{Z}, \ldots, a_{r}+n \mathbb{Z}\right\rangle$. Without loss of generality assume that $p_{1}<p_{2}<\cdots<p_{r}$. If $j \neq i$, then $\operatorname{ord}_{p_{j}}\left(a_{i}\right)=1$, so $\operatorname{ord}_{n_{j}}\left(a_{i}\right)$ divides $n_{j}$ (indeed, it divides $n_{j} / p_{j}$ ). Let $e_{i}=n_{i+1} \cdots n_{r}$. If $j>i$, then $\operatorname{ord}_{n_{j}}\left(a_{i}^{e_{i}}\right)=1$, and since $e_{i}$ is coprime to $\phi\left(n_{i}\right)$, so $\operatorname{ord}_{n_{i}}\left(a_{i}^{e_{i}}\right)=\operatorname{ord}_{n_{i}}\left(a_{i}\right)=\phi\left(n_{i}\right)$. It follows now that $U_{n}=\left\langle a_{1}^{e_{1}}+n \mathbb{Z}, \ldots, a_{r}^{e_{r}}+n \mathbb{Z}\right\rangle$ and hence $U_{n}=\left\langle a_{1}+n \mathbb{Z}, \ldots, a_{r}+n \mathbb{Z}\right\rangle$.
(c) This follows from Theorems 2(b) and 4(a) by arguing as in (b) above.

Suppose that $p_{1}, \ldots, p_{r}$ are distinct (odd) primes and that $p_{i}$ does not divide $p_{j}-1$ for all $i \neq j$. Then a stronger conclusion than that in Theorem 4(b) holds. Given $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$, set $n_{i}=p_{i}^{k_{i}}$ and $f_{i}=n / n_{i}$. Then arguing as in the proof of Theorem 4(b), $\operatorname{ord}_{n_{i}}\left(a_{i}^{f_{i}}\right)=\operatorname{ord}_{n_{i}}\left(a_{i}\right)=\phi\left(n_{i}\right)$, and $\operatorname{ord}_{n_{j}}\left(a_{i}^{f_{i}}\right)=1$ if $i \neq j$. Hence, $U_{n}$ is the internal direct product

$$
U_{n}=\left\langle a_{1}^{f_{1}}+n \mathbb{Z}\right\rangle \dot{\times} \cdots \dot{\times}\left\langle a_{r}^{f_{r}}+n \mathbb{Z}\right\rangle
$$

where $U_{n_{i}}=\left\langle a_{i}^{f_{i}}+n_{i} \mathbb{Z}\right\rangle \cong\left\langle a_{i}^{f_{i}}+n \mathbb{Z}\right\rangle$.

## Acknowledgement

I would like to thank Weib Bosma for his helpful comments.

## References

1. W. Bosma and J. Cannon, Handbook of Magma Functions, Sydney University, 1994.
2. I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction to the Theory of Numbers, Fifth Edition, Wiley and Sons, 1991.

School of Mathematics and Statistics
University of Sydney, N.S.W. 2006, Australia

