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Abstract. The chief aim of this paper is to describe a procedure which,

given a d-dimensional absolutely irreducible matrix representation of a finite

group over a finite field E, produces an equivalent representation such that all

matrix entries lie in a subfield F of E which is as small as possible. The algo-

rithm relies on a matrix version of Hilbert’s Theorem 90, and is probabilistic

with expected running time O(|E : F|d3) when |F| is bounded. Using similar

methods we then describe an algorithm which takes as input a prime number

and a power-conjugate presentation for a finite soluble group, and as output

produces a full set of absolutely irreducible representations of the group over

fields whose characteristic is the specified prime, each representation being

written over its minimal field.

1. The main algorithm

Let ρ:G → GL(d,E) be an absolutely irreducible representation of the group

G. It is clear that there exists a subfield F of E, minimal with respect to

inclusion, such that there exists a representation G → GL(d,F) equivalent to

ρ. If E has nonzero characteristic, then F is determined by ρ, and coincides

with the subfield generated by the character values of ρ (see [2, VII Theorem

1.17]). Indeed, the arguments presented here yield a proof of this fact. If E

has characteristic zero, there may be more than one choice for F.
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Suppose that F is a subfield of E such that E is a finite Galois extension of F

whose Galois group is cyclic, of order t, and generated by α. Assume further

that the norm map from E to F (given by λ 7→ λλαλα2

· · ·λαt−1

) is surjective.

This hypothesis certainly holds if |E| is finite, and this is the case of principal

interest to us. Our first objective is to describe a procedure which deter-

mines whether an absolutely irreducible representation ρ:G → GL(d,E) of a

finitely generated group G is equivalent to a representation G → GL(d,F),

and if so, finds an A ∈ GL(d,E) such that A−1ρ(g)A ∈ GL(d,F) for all

g ∈ G. Note that if g1, g2, . . . , gn generate G, this condition is equivalent

to A−1ρ(gi)A ∈ GL(d,F) for all i ∈ {1, 2, . . . , n}.

A basic step in our algorithm involves testing whether two given matrix

representations of G are equivalent, and if they are, finding a nonsingular in-

tertwining matrix. The naive approach to this problem involves solving nd2

homogeneous linear equations in d2 unknowns over the field E. Computation-

ally, this has cost O(nd6). Alternatively, there is a probabilistic algorithm,

described by Holt and Rees in [1], which has expected running time O(d3).

(This complexity result, and those throughout this section, assume that the

cost of field arithmetic, including applying a field automorphism, is O(1).)

With the notation as above, suppose that A ∈ GL(d,E) has the property

that A−1ρ(g)A ∈ GL(d,F) for all g ∈ G. The automorphism α of E gives

rise to an automorphism of Mat(d,E) (the algebra of d× d matrices over E)

which we also denote by α. Since the fixed subfield of α is F, it is clear

that B ∈ Mat(d,E) satisfies Bα = B if and only if B ∈ Mat(d,F). So

(A−1ρ(g)A)α = A−1ρ(g)A for all g ∈ G, and thus C = A(Aα)−1 satisfies

(1) C−1ρ(g)C = ρ(g)α (for all g ∈ G).

Since ρ is absolutely irreducible, equation (1) determines C up to a nonzero

scalar multiple. The first step in our procedure is, therefore, to use an algo-

rithm such as in [1] to find (if possible) a C ∈ GL(d,E) satisfying (1). If no

such C exists, then ρ cannot be written over F; so assume henceforth that

such a C has been found.

Proposition (1.1). If C ∈ GL(d,E) satisfies (1), then CCαCα2

· · ·Cαt−1

equals µI where µ ∈ F and I is the d× d identity matrix.
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Proof. Since CCαCα2

· · ·Cαt−1

conjugates ρ(g) to ρ(g)α
t

= ρ(g) for all g ∈ G,

it must equal µI for some µ ∈ E, since ρ is assumed to be absolutely irre-

ducible. However,

µαI = C(µI)αC−1 = C(CαCα2

Cα3

· · ·Cαt

)C−1 = CCαCα2

· · ·Cαt−1

= µI,

and so µ ∈ F, as desired. ⊔⊓

The computation of µ can be effected by t− 1 vector by matrix multipli-

cations, since if v is the first row of C then µ is the first component of the

row vector vCαCα2

· · ·Cαt−1

. This has cost O(td2). If t is large compared

with d, then µ may be computed at cost O((log t)d3) by using the fact that

C2i = Ci(Ci)
αi

for each i, where Ci = CCα · · ·Cαi−1

.

Since the norm map from E to F is assumed to be surjective, there exists

a ν ∈ E whose norm is µ. We do not address here the practical problem of

finding ν given µ. The methods used for storing field elements and performing

field computations obviously affect this issue. (When |F| is bounded, there

is an O(1) probalistic algorithm for computing ν.) Once ν has been found

we may replace C by ν−1C, and assume thereafter that CCα · · ·Cαt−1

= I.

Lemma (1.2). If C ∈ GL(d,E) satisfies CCα · · ·Cαt−1

= I, then there exists

a nonzero column vector v ∈ E
d such that Cvα = v.

Proof. Let u0 ∈ E
d be nonzero, and for i > 0 define ui recursively by

ui = Cuα
i−1. Observe that ut = u0. Now since the field automorphisms

α0, α1, . . . , αt−1 are distinct they are linearly independent, and since the ui

are nonzero it follows that there exists a λ ∈ E such that v =
∑t−1

i=0 λ
αi

ui 6= 0.

Moreover, Cvα =
∑t

i=1 λ
αi

Cuα
i−1 = v, as desired. ⊔⊓

The following proposition may be viewed as a generalization of the multi-

plicative form of Hilbert’s Theorem 90. The corresponding generalization of

the additive form is trivially true.

Proposition (1.3). If C ∈ GL(d,E) satisfies CCα · · ·Cαt−1

= I, then there

exists an A ∈ GL(d,E) with C = A(Aα)−1.

Proof. The result is true when d = 1 by the multiplicative form of Hilbert’s

Theorem 90. Proceeding by induction, assume that d > 1. By Lemma (1.2)
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there exists a nonzero vector v such that Cvα = v, and if B is an invertible

matrix with v as its first column then

B−1CBα =

(

1 u

0 C1

)

where C1 ∈ GL(d − 1,E) satisfies C1C
α
1 · · ·Cαt−1

1 = I. By the inductive

hypothesis, there exists an A1 ∈ GL(d−1,E) such that C1 = A1(A
α
1 )

−1, and

it follows that

(

1 0

0 A1

)−1

B−1CBα

(

1 0

0 A1

)α

=

(

1 u1

0 I

)

where u1 = u(A−1
1 )α satisfies

∑t−1
i=0 u

αi

1 = 0. It follows from the additive form

of Hilbert’s Theorem 90 that there exists a row vector u2 with u1 = u2−uα
2 ,

and then

A = B

(

1 0

0 A1

)(

1 u2

0 I

)

has the required property C = A(Aα)−1. ⊔⊓

Note that if C = A(Aα)−1 then the map Mat(d,E) → Mat(d,E) given by

X 7→ X + CXα + CCαXα2

+ · · ·+ CCα · · ·Cαt−2

Xαt−1

= A(A−1X + (A−1X)α + · · ·+ (A−1X)α
t−1

)

has image consisting of all matrices of the form AY with Y ∈ Mat(d,F).

These are exactly the matrices A′ ∈ Mat(d,E) such that (A−1A′)α = A−1A′,

or equivalently, C(A′)α = A′. If X is chosen arbitrarily and X 7→ AY = A′,

then the probability that Y is invertible (so that C = A′((A′)α)−1) is

|GL(d,F)|/|Mat(d,F)|. It follows that a reasonable procedure for finding

an A satisfying the equation C = A(Aα)−1 is to choose X ∈ Mat(d,E) ran-

domly and compute A = X +CXα +CCαXα2

+ · · ·+CCα · · ·Cαt−2

Xαt−1

,

repeating if necessary until an invertible A is found. (One may show that

1− |F|−1 ≥ |GL(d,F)|/|Mat(d,F)| > 1− |F|−1 − |F|−2 ≥ 1/4.)

Observe that C = A(Aα)−1 combines with equation (1) to give

A−1ρ(g)A = (A−1ρ(g)A)α (for all g ∈ G).
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It follows that A−1ρ(g)A ∈ GL(d,F) for each g, and we have achieved our

goal of constructing a representation equivalent to ρ with image contained in

GL(d,F). Note that if Ai = X+CXα+CCαXα2

+ · · ·+CCα · · ·Cαi−2

Xαi−1

then Ai+1 = X + CAα
i , and it follows that At can be evaluated with t − 1

matrix multiplications and t− 1 matrix additions. It can be seen, therefore,

that our procedure has expected running time O(|E : F|d3).

2. Absolutely irreducible representations of soluble groups

Suppose that we are given a consistent power-conjugate presentation for a

finite group G. That is, G is generated by g1, g2, . . . , gn, where n is the

composition length of G, with defining relations

gpi

i = vi (1 ≤ i ≤ n)

g−1
i gjgi = wij (1 ≤ i < j ≤ n)

where each pi is a prime and each vi is a word in the generators gj for

i < j ≤ n, and each wij is a word in the gk for i < k ≤ n. It is clear

that a group has such a presentation if and only if it is finite and soluble.

Specifically, if Gi is the subgroup of G generated by gi, gi+1, . . . , gn, then

(∗) G = G1 ≥ G2 ≥ · · · ≥ Gn ≥ Gn+1 = {1}

is a subnormal series, and for each i the quotient Gi/Gi+1 has order divid-

ing pi. Given that n is the composition length of G, it follows that (∗) is a

composition series and the order of Gi/Gi+1 is exactly pi. We will show how

the natural algorithm for constructing the absolutely irreducible representa-

tions of G (in a fixed nonzero characteristic), by working up the composition

series (∗), can be readily adapted to ensure that each representation is written

over its minimal field. We consider that we have constructed a representation

of the group Gi once we have computed matrices representing the generators

gi, gi+1, . . . , gn.

For ease of exposition we let K be a fixed algebraic closure of a field of

prime order, and deal henceforth only with subfields of K. Assume, induc-

tively, that we have constructed representations σ1, σ2, . . . , σs of the group
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G2 such that

(i) each σi is absolutely irreducible and written over its (unique) minimal

subfield of K, and

(ii) every absolutely irreducible representation of G2 over K is equivalent

to exactly one of the σi.

Henceforth, to simplify the notation, we write H = G2, a = g1 and p = p1.

The absolutely irreducible K-representations of H are permuted by G via

σg(h) = σ(ghg−1)

for all h ∈ H and g ∈ G. The first step is to find, for each i, which of the

representations σ1, σ2, . . . , σs is equivalent to the representation σa
i . If σa

i

is equivalent to σi, then there exists a representation of G extending σi; the

minimal field for any such extension will be an extension of the field of σi.

If σa
i is not equivalent to σi, then σi will be G-conjugate to p = |G : H| of

the representations σk. In this case the representation of G induced from σi

is absolutely irreducible; however, its minimal field may be smaller than

that of σi. Since G-conjugate representations of H yield equivalent induced

representations of G, one representative only should be chosen from each

G-conjugacy class.

Case 1. Assume that E is a finite field, and σ:H → GL(d,E) is an absolutely

irreducible representation, with minimal field E, such that σa is equivalent

to σ.

Compute a matrix A ∈ GL(d,E) such that Aσ(h)A−1 = σ(aha−1) for all

h ∈ H. As σ is absolutely irreducible and ap ∈ H, so Ap = µσ(ap) for some

µ in E
× (the multiplicative group of E). If the characteristic of E equals p,

then µ has a unique pth root ν ∈ E
×. Indeed, ν is a power of µ since p

is coprime to |E×|. In this case there is a unique representation ρ of G ex-

tending σ, given by ρ(a) = ν−1A and ρ(h) = σ(h) for all h ∈ H. Suppose

alternatively that the characteristic of E is not p. In this case νp = µ has

exactly p solutions ν1, . . . , νp in K, and correspondingly there are p pairwise

inequivalent extensions ρ1, . . . , ρp of σ given by defining ρi(a) = ν−1
i A. For

each i, the extension field E(νi) is the minimal field for ρi. If |E
×| is coprime

to p, then one of the solutions of νp = µ lies in the field E, while the remain-

ing p− 1 solutions generate the same field, which is the smallest extension of
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E whose order is congruent to 1 modulo p. If |E×| is a multiple of p, then all

solutions of νp = µ generate the same extension E
′ of E. Note that |E′ : E|

is 1 or p, and E
′ is the smallest extension of E whose order is congruent to

1 modulo p|ν|.

Case 2. Assume that E is a finite field, and σ:H → GL(d,E) is an absolutely

irreducible representation, with minimal field E, such that σa is not equivalent

to σ.

Let k be the degree of E over its prime subfield. If k is not a multiple

of p, then E is the minimal field for the induced representation σG. If k is

a multiple of p, then E has an automorphism α of order p whose fixed sub-

field, F, is uniquely defined by |E : F| = p. In this case, if the representation

σα:h 7→ σ(h)α is not equivalent to one of the G-conjugates of σ, then E is

still the minimal field for σG; however, if σα is equivalent to a G-conjugate

of σ then one can readily show that σG is equivalent to (σG)α, and so the

minimal field of σG is F.

We present an explicit construction for an F-representation equivalent to

σG in the case that σα is equivalent to a G-conjugate of σ. Replacing α

by a power of itself, we may assume that σα is equivalent to σa. Find an

A ∈ GL(d,E) such that

(2) Aσ(h)αA−1 = σ(aha−1) (for all h ∈ H),

and note that, by absolute irreducibility, AAα · · ·Aαp−1

= µσ(ap) for some

µ ∈ E. As in Proposition (1.1) we see that µ ∈ F, since

µασ(ap)α = AαAα2

· · ·Aαp

= A−1(AAαAα2

· · ·Aαp−1

)A

= µ(A−1σ(ap)A)

= µ(A−1σ(aapa−1)A)

= µσ(ap)α,

where the last step follows from (2). Hence replacing A by ν−1A, where

ν ∈ E
× satisfies ννα · · · να

p−1

= µ, we may assume that

(3) AAα · · ·Aαp−1

= σ(ap).
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The regular representation of E considered as an F-algebra yields an F-

algebra monomorphism φ:E → Mat(p,F), and since α is an F-automorphism

of E there is an M ∈ GL(p,F) satisfying Mp = I and

M−1φ(λ)M = φ(λα) (for all λ ∈ E).

(We remark that computing φ and M is best done when the elements of E are

represented as polynomials over F modulo an irreducible polynomial. In this

case, the assumption in Section 1, that field arithmetic in E can be performed

in constant time, does not hold.) Let Φ:Mat(d,E) → Mat(pd,F) be defined

by Φ((λi,j)) = (φ(λi,j)), and define S ∈ GL(d,F) to be the diagonal sum of

d copies of M . Then Φ is an F-algebra monomorphism, and

(4) S−1Φ(X)S = Φ(Xα) (for all X ∈ Mat(d,E)).

It now follows that there is a representation ρ:G → GL(pd,F) such that

ρ(a) = Φ(A)S−1 and ρ(h) = Φ(σ(h)) for all h ∈ H, since

ρ(a)p = (Φ(A)S−1)p

= Φ(A)(S−1Φ(A)S) · · · (S−(p−1)Φ(A)Sp−1)S−p

= Φ(A)Φ(Aα) · · ·Φ(Aαp−1

) (using (4) and Sp = I)

= Φ(σ(ap)) (by (3))

= ρ(ap)

and

ρ(a)ρ(h)ρ(a)−1 = Φ(A)S−1Φ(σ(h))SΦ(A)−1

= Φ(A)Φ(σ(h)α)Φ(A−1) (by (4))

= Φ(σ(aha−1)) (by (2))

= ρ(aha−1).

It remains to check that ρ is equivalent to σG. It is clear that there exists

a T ∈ GL(p,E) such that

Tφ(λ)T−1 = diag(λ, λα, . . . , λαp−1

)
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for all λ ∈ E. Furthermore, if vi denotes the (i+1)th row of T and Vi denotes

the subspace of Epd comprising the elements of the form (λ1vi, λ2vi, . . . , λdvi)

where λ1, λ2, . . . , λd ∈ E, then

(i) E
pd = V0 ⊕ V1 ⊕ · · · ⊕ Vp−1,

(ii) each Vi is ρ(H)-invariant, inducing an action equivalent to σai

, and

(iii) Viρ(a) = Vi+1, where the subscripts are read modulo p.

Note that (ii) follows from viφ(λ) = λαi

vi, and (iii) follows from the equation

ρ(a)ρ(h)ρ(a)−1 = ρ(aha−1). These conditions guarantee that ρ is equivalent

to σG, as required. We have thus achieved our goal of constructing the

absolutely irreducible representations of G over their minimal fields.
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