On the tensor product of polynomials over a ring
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ABSTRACT. Given polynomials a and b over an integral domain R, their
tensor product (denoted a ® b) is a polynomial over R of degree deg(a) deg(b)
whose roots comprise all products a3, where « is a root of a, and 3 is a root
of b. This paper considers basic properties of ® including how to factor a ® b
into irreducibles factors, and the direct sum decomposition of the ®-product
of fields.
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1. Introduction

Let ag, ... ,am and by, ..., b, be indeterminates and let a = > 1w a; X*
and b =Y ;X ¢ be polynomials of degree m > 0 and n > 0 respectively
over the polynomial ring Z,, , = Z[ao, ... , @m, bo, ... ,by]. Let a have roots
a1, ..., o, and b have roots i, ..., B, in the splitting field of @ and b over
the field of fractions of Z,, ,. Then the tensor product of a and b is defined
to be

m n
a®b=apbi [[[[(X - iBy)-
i=1j=1
It follows from Theorem 2.1 below that a ® b is a polynomial, of degree
mn, over Zy, . The purpose of this paper is to study properties of ®.
We remark that one may define the tensor product of non-zero polynomials

over an arbitrary commutative ring R with 1 by using the above definition
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2 S. P. Glasby

and evaluation homomorphisms Z,, , — R. Most of the theory carries over
mutatis mutandis to R[X] when R is an integral domain. In Section 3,
according to context, the symbols ag, . . ., @, bo, - - -, b, need to be interpreted
as elements of R, and not indeterminants. If R has zero divisors, then the
degree of a ® b may be less than mn (in which case a ® b = 0).

The concept of the ®-product of monic polynomials was introduced by
Brawley and Carlitz in 1987 (see [BC87, BB93]) as a special case of a com-
posed product. We find it convenient to define the ®-product of non-monic
polynomials so that, for example, Theorem 2.1 has a nice statement. One
motivation for studying the tensor product of polynomials arises from the
following problem. Given an FG-module U for a (finite) group G, determine
when is it isomorphic to an inner tensor product V ® W of FG-modules of
smaller dimension (see [LO97]). A necessary condition for this is that the
characteristic polynomial of an element of G acting on U can be written as
a ®-product of smaller degree polynomials. Note that if ¢(A) denotes the
characteristic polynomial of a matrix A, then ¢(A ® B) = ¢(A) ® ¢(B).

The definition of the tensor product on R[X] is closely related to multipli-
cation in the Witt ring W (R) which may be viewed as the set, 1 + X R[[X]],
of power series with constant term 1 (with appropriate operations of addi-
tion and multiplication, see [K73]). In keeping with the motivation for this
paper, we will focus on tensor multiplication and factorization in R[X]| and
not W(R). In Section 2 we study the coeflicients of a ® b, and also show
that if R is an integral domain, then the polynomials in R[X] with non-zero
constant term form a commutative ‘semi-ring’ with 1 which has a natural
automorphism of order 2. In Section 3 we show how a ® b factors into irre-
ducibles, and how this factorization is related to the tensor factorization of
fields. In Section 4 we consider the factorization of a ® b where both a and

b are binomial, or cyclotomic polynomials.

The topic of unique ®-factorization is not discussed here. It is shown
in [BC87] that unique ®-factorization holds for the set of all irreducible
polynomials (excluding X) over a finite field. A shorter proof of this fact
is given in [G95]. It is shown in Lemma 3.2(v) that a tensor factorization

of a polynomial gives rise to a tensor factorization of a field. The converse
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is false. Let ¢ = (1 +14)/v/2 where i = /—1. Then ( is a primitive eighth
root of unity, and there are three ways to write the cyclotomic field Q(¢) as

a tensor product over QQ of proper subfields:

Q1) ® QV2), Q(¢) ®Q(V-2), and Q(V2)®Q(V-2).

Each factorization shows that ( can be written as a sum of products of ele-
ments from the quadratic subfields. However, only in the first two cases can

¢ be written as a product of elements from the quadratic subfields, namely

Czﬂ—ki)% = 1-i)=

factorizations of the minimal polynomial of ( over Q:

These two factorizations give rise to ®-

X' 4+1=(X?-2X+2)® (X2 -1/2) = (X?-2X +2)® (X% +1/2).

2. Basic properties of ®

Recall that the degree and weight of the monomial )\algoa’fl ---akm are
S o ki and Yo ik; respectively. We say that a polynomial in several
variables has wuniform weight k if every monomial summand has weight k;
we say that it has uniform degree k (or is homogeneous of degree k) if every
monomial summand has degree k. We adopt the convention that aj = 0 if

k > m, and similarly by = 0 if £ > n.
We give an example of the coefficients of ¢ ® b. A long, but otherwise
straightforward, calculation shows that
(ap+a1X + a2 X%+ a3X3) ® (bo + 01 X + b X?) =
agby — apa1bib1 X + (apazbob? + a3bibs — 2apasbibs) X2
+ (3apasbobiby — ayazbobibs — apazb3) X>
+ (a2bob2 + arasbiby — 2a1a3bob2) X* — anaszh1b3X° + a2b3 X6,

For a different perspective on computing coefficients of a ® b, see [S99].

The reader is referred to [M95] for notation and terminology concern-
ing partitions and symmetric polynomials. Denote the set of all partitions
A= (A,.-yAm) of k withn > Ay > --- > Ay, > 0 by Py, and the
dominance partial order on Py ,, , by <. Given A € Py, ,, define

M=k X >i} and Xj=n—Ap_ji1
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fori=1,...,nand 7 =1,...,m. Then the conjugate partition, \’, of X lies
in Py pmand A € Ppp_k.mn- It is easy to see, by considering the diagram

of a partition, that

)\'-l—)\n i1 =m fore=1,...,n.
Define by = by, ---by,, and ay = ax; - @y - For + = 0,...,m, denote by
e; the ith elementary symmetric polynomial in variables «q,...,a,,, and

observe that, when evaluated in the splitting field of a,

ei = (=1)%an s

Define e, = ey, ---e,, for p € Ppp_gnm. Hence, by the previous two
displayed equations,

_ mn—k_—n _ mn—k _—n
= (—1) a ax, .., =(-1) a,tay.
=1
Consider v € Pyn—k,mpn- In particular v is an m-tuple. Observe that the
symmetric group Sy, acts naturally on m-tuples of integers, preserving the

total sum of the entries, and define

My (1, -« vy Q) :Zail---a%"

where the sum ranges over all m-tuples (ji,-..,Jm) in the Sp,-orbit of v.
Thus m,(a1,...,0,) is invariant under permutations of {1,...,m}, and
so is symmetric when regarded as a polynomial in aq,...,q,,. Hence by
[M95, 1, 2.3] and Mébius inversion, my (a1, ..., am) = 3, o, Ev,péy for some
integers €, ,, where €, , = 1. These considerations, and the fact that the map
Pimn = Prn—k,mn defined by A — ) is an order-preserving bijection, tell
us that

mX(ala e, am) == Z gx’ﬁeﬁ/ = z €X7ﬁ(_1)mn_kar_nnal"

A< u<A

Z %\ ua“

p<A

where fy( ) = = (—1)mnFkes 5 satisfies ’ny;\ = (—1)™=F for each ), k.
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THEOREM 2.1. Ifa®b=> o cX*, then for each k,

Z Z %\ uax' o

AEPI@ m,n IJ‘ZA

(k ) such that 'yﬁ\k;\ = (=1)™F for all \ € Pyn- In

particular, c; 1s an element Of Ly, n which has uniform degree n (respec-

for some integers ~yy’
tively m) and uniform weight k when viewed as a polynomial in ag,. .. ,Gny
(respectively by, . .., by).

Proof. For each 1, the polynomials (X — «;) ® b and Z?:o oI b; X7 are

equal as they have the same roots and leading coeflicient. We have

a®b=ap, H((X—ozi)®b) = a%HZa?_jijj
=1 i=1 5=0
35 (St e, 1)
where the inner sum is over all m-tuples (j1,...,jm) With0 < j1,...,jm <n

and j; +---+ jm = k. Hence

a®b:afn§ Z (Za” i, %jm>bA D&

k}ZO }‘Epk,m,n

where now the inner sum ranges over all m-tuples (ji, . .., jm) in the S;,-orbit
of the given A € Py, ,. Thus, by the comments immediately preceding the

statement of this theorem,

a®b=a”m§ Z my (a1, ...y )b Xk

k=0 AePk,m,n
mn
k
=21 X e | X5
k=0 Ael:kﬂn,n P‘SA
and the theorem follows quickly. a

(k )

The integer 7y, is a sum of products of Kosta numbers (see [M95]). Com-

puting tensor products over the ring

(Z/pZ) [G'Oa -eey O, b07 DRI bn] = Zm,n/pZm,n
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is generally faster than computing in Z,, ,, and the intermediate calcula-
tions do not involve large integers. Furthermore, if p is chosen so that
—-p/2 < ’yg\k; < p/2 holds for all k, A, i, then it follows from Theorem 2.1 that
one can unambiguously pull back a ®-product computed in Zy, n/pZmp, n to
Zin,n- We shall now relate ®-products in Z,, ,, to multiplication in the Witt
ring W(Z).

The following technical result allows us to define multiplication, denoted ®,
in the Witt ring of Z[a1, as, - .., b1, ba,...]. Suppose m > 0 and ¢ is a homo-
morphism Zny, [ X] — Zp,—1,,[X]| mapping a,, to zero and fixing Z, 1 ,[X]
elementwise. Then ¢(a) = Z;z_ol a; X* and ¢(b) =

PRroPOSITION 2.2. With the above notation:

(1) p(a®b) = (=1)"bo (#(a) ® ¢(b)).

(i) Suppose ag = by =1 and R = Zlas, ..., 0m,b1,...,b,]. Then the binary
operation ® on R[X] defined by a ©® b = (—1)d&(@)dee(®)(q @ b) satisfies
$(a ®b) = ¢(a) © $(b).

Proof. (i) Let c=a®b and d = ¢(a) ® b. We shall show that

¢(ck) = (—1)"body

holds for k£ = 0,...,(m — 1)n. By Theorem 2.1

dl)= D Y mablan)b, and di= Y > yMayb,

AEPE mn A PEPr m —1n O2p
The following are equivalent: ¢(ax/) # 0; ¢(ax) = ax; m > Aj; Ay, = 0.
If o > X and A, =0, then p,,, = 0. Now 9: Py yp—1,n — Pi,m.n defined by

Y(p1, -y Pm-1) = (P1,-- -5 Pm—1,0) is an order-preserving injective map. Let

A = 9p and p = Yo where p,0 € Py 1. Then ax = a, and b, = bob,,

Ber) = D D Yyiyotsbobe.

pePkm 1,n 0>P

SO

(k) (k)

We complete the proof by showing below that 'yw 7 550 OF equivalently
g

6%,% = &€5,59 holds for p,0 € Pk,m—l,n-
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Recall that

(1) mz(Q, ..., 0m_1) = 265’5 ez (Q1,...,pm_1), and
5<p

(2) m%(al,...,am): ~Z~€%’%e%1(a1,...,am).
Po<tp

Now (%)1 =n and

1 o

n! da,,™

m%(al, cees ) = mg(ar, ..oy Qpo1)-

Since H;.n:l(X — ;) = Zism(—l)iei(al, ce vy 0 ) X™ 7 holds for m > 0, we
see that e;(aq,...,au,) equals 0 if 4 < 0, and 1 if ¢ = 0. Since m > 1, it
follows that

ei(ar,...;am) =ei(ar,...,0m—1) +ei—1(Q1,. .., A1) .
Therefore e, . ,,)(@1,..., ) is a polynomial in o, of degree < n and the
coefficient of oy, is e, —1, .. v,—1)(@1, ..., @p_1). Thus

1 o
l m e(ul,...,un)(ah ey Q) = e(ul—l,...,un—l)(ala ceey Q1)

However, it can been seen by considering the diagram of a partition that
(o) —1 = (o), holds for o € Py py—1,n and 1 < i < n. Thus

1 o
(3) E m m%(al, ey OAm) = NZN 6%’% 6(1/,‘0-")1(041, ey Oém_l).
po<yp
Since ey (@1, ..., m—1) = ez (a1, ..., ®nm_1), it follows by comparing (1)
and (3) that e55 = €5 88 desired.

(74) It follows from (7) that

$a©b) = (-1)""¢(a @ b) = (=1) ™" (p(a) ® $(b)) = d(a) © $(b). O

If ag = bg = 1 and m,n > k, then it follows from Theorem 2.1 and
Proposition 2.2(#3) that the coefficient of X* in a ® b is an element of
Zlay,...,ak,b1,...,bg] which is independent of m and n. Therefore the
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binary operation ® may be extended to the set of power series with constant
term 1 over the ring Zlas,as,...,b1,by,...]. Let a = 14+ > ;2 a;X* and
Ti(a) =1+ 38 a; X% If b =1+ Y2, b; X%, then we may define a ® b by
Ti(a ©b) = T (Tk(a) © Tk (b)) for k =1,2,.... This gives the multiplication
in the Witt ring of Z[a1,as, ... ,b1,ba,...] (see [K73]). Many properties in-
volving ®-products of power series can be readily deduced from properties
of ®-products of polynomials. Proposition 2.2 may be used to show that the
Witt ring W(R) is semi-simple if R is an integral domain of characteristic
zero (because a @ a @ --- ® a = 1 implies that a = 1). Henceforth we shall
consider polynomials, and not power series, and we revert to our original

notation where a and b are polynomials of degrees m and n respectively.

Given the conventions that a non-zero constant polynomial has degree 0
and a non-zero ring element raised to the power zero is 1, it follows that

a® by = by*. It is straightforward to check that ¢ ® X™ = a}, X™" and, if
B #0, that a ® (X — §) = fma(X/B).

THEOREM 2.3. Let R be an integral domain (with unity). Then the set
R[X]*, of non-zero polynomials, is a commutative ‘semi-ring’ (with unity)
with addition corresponding to polynomial multiplication, and multiplication

corresponding to ®@. Furthermore, the map p: R X|* — R[X]* defined by

deg(a)
(ap)(X) = (—X)* 8@ a(1/X) = (—1)%) Y~ g x sl

1=0

satisfies p> = p and the restriction of p to the sub-semi-ring of polynomials

with non-zero constant terms is an automorphism of order 2.

Proof. The term ‘semi-ring’, means that all the ring axioms hold except
possibly for the existence of additive inverses. To prove that R[X]* is a
commutative semi-ring it suffices to prove for a, b, ¢ € R[X|* that a®b = bQa,
a® (b®c)=(a®b)®cand a® (bc) = (a®b)(a®c). Let v1,...,7p be the
roots of c¢. The associative law holds as

(a®b)®@c= (apb)Pey™ [ [ (X — (i) ),
2,9,k
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and this equals

®(b®c)=ap(bhe)™ [ [ (X — ai(Bim))-

1,9,k

The commutative and distributive laws are also easily verified. Note that 1 is

the additive identity, and X —1 is the multiplicative identity for the semi-ring.

It is not hard to see that S = {a € R[X]* | ag # 0} is a sub-semi-ring. Also
p3 = p and degap < dega with equality if and only if a € S. Since Sp = S,
p defines a bijection of S of order 2. If a,b € R[X]*, then (ap)(bp) = (ab)p

since

(ap)(bp) = (—X)™a(1/X)(-X)"b(1/X) = (=X)™""(ab)(1/X) = (ab)p.

If a,b € S, we show that (a ®b)p = (ap) ® (bp). In this case the roots «; and

B; are non-zero, and hence
(ap)(X ag H(X - and (bp)(X 1)"bg H (X — 5

Therefore
(ap) ® = agbg’ H

However, (a ® b)(0) = (—=1)™"afb5* and so

(a®Db)p = agby’ H — (uBy)™") = (ap) ® (bp)

and p restricts to an involutory automorphism of S as claimed. 0

Note that p does not extend to the Witt ring. Let a,b € R[X]* and write
a= X"a and b= X°b where @,b € S. Then

(a ® b)p — (an—(m—r)(n—s) a® E)p — (_1)nr+ms—rs(a ® 5)/)

and

(ap) ® (bp) = ((—1)"(@p)) ® ((—1)°(bp)) = (=1)"*=*)**("=") (@p @ bp).
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Thus (a®b)p = (—1)"%(ap) ® (bp) and hence p is an endomorphism of R[X|*
if char(R) = 2.

In practise, one does not use the definition of a ® b to compute the tensor
product of polynomials. If a and b are monic polynomials and A and B
denote their respective companion matrices, then a ® b = det(X1 — A ® B)
provides a practical method to compute a®b. A variant of this method, with
lower time complexity, is described in [G95]. This fast method is particularly

useful for computing in the algebraic closure of a finite field (see [G96]).

3. Factoring @ ® b into irreducibles

Given a,b € Zyy, »[X], it is shown in Theorem 3.1 that a®b € Zy, ,[X] is ir-
reducible. This section is concerned with the factorization of tensor products
in R[X], where R is a unique factorization domain. Consider an evaluation
homomorphism :Z,, , = R. Now 1 is determined by the values of a;v
and b;9 in R (we shall assume that 1¢) = 1), and ¢ gives rise to a homo-
morphism Z,, ,[X]| — R[X], which we also call 9, that fixes X. Although
a®b € Ly n[X] is irreducible, at) @ by € R[X]| may be reducible. We shall
use the notation a;, b; to denote (indeterminant) elements of Z,, , and also
to denote elements of R (identified with a;1,b;4). One can determine from

the context whether a;, b; is an element of Z,, ,, or R.

THEOREM 3.1. If a,b € Zp, »[X] have degrees m,n > 1 respectively, then

a ® b 1s irreducible over Zyy, p,.

Proof. 1t suffices to prove that for m,n > 1 there is a commutative ring R
and polynomials f and g over R, of degrees m and n respectively, such that
f ® g is irreducible over R. We shall assume, without loss of generality, that
1<m<n.

Let Q. denote the rth cyclotomic field, and let ®, denote the rth cyclo-
tomic polynomial of degree ¢(r), where ¢ is Euler’s phi-function. We shall

choose r and s so that ged(r,s) = 1, and note that &, @ &, = &,,. Let

_ k141 k41
T_pll ...ptt

Dirichlet’s Theorem we may choose a prime s congruent to 1 modulo n and

and m = p’f1 - pft where the p; are distinct primes. By

different to py,...,p;. Then ged(r, s) = 1, and Q,5 is the compositum Q, Q.
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Since m divides ¢(r) there is a subfield K,,, of Q, satisfying |Q, : K,,| =m
Similarly, let K,, be a subfield of Q, satisfying |Qs : K, | = n.

Now Gal(Q,. : Q) acts regularly on the roots of ®,, and the subgroup
Gal(Q. : K,,) permutes the roots in orbits of length m, hence ®, equals
J1++ - fg(r)/m Where each f; is irreducible over K, of degree m. Similarly,
®; = g1 Gg¢(s)/n Where each g; is irreducible over K;, of degree n. The
following principle may be used to show that |Q.s : K,K,| = mn: if
K, are fields such that K : KN L is Galois, then KL : L is Galois and
KL : L| = [K: KNL|. Therefore ®.; = hy---hg(rs)/mn Where each hy is
irreducible over K,,, K,, of degree mn. It follows from

¢(rs)/mn é(r)/m ¢(s)/n
H hk::(I)rs:(I)r@(I)s: H H fz®g_7
k=1 i=1 =1

that each f; ® g; equals some hy. This completes the proof as deg(f;) = m,
deg(g;) = n and f; ® g; is irreducible over K,,, K, . O

The following notation will hold throughout this section: R is a unique
factorization domain, F is its field of fractions, and F is an algebraic closure
of F. Let a,b € R[X] and consider how a ® b factors into irreducible factors
over R. Since (fg) ® h = (f ® h)(g ® h), we shall assume that a and b
are irreducible over R. By Gauss’ Lemma, the irreducible factors of a ® b
are the same (up to constant multiples) as those over F. We shall assume
henceforth that a and b are monic and irreducible over F. As a shorthand we
write a = mqr, b = mg/r where the notation m,/r denotes the minimum

polynomial of o over F.

LEMMA 3.2. Let a, 8 € Fx, and let mq p, mg/p denote the minimum poly-
nomials of o, B over I, respectively. The following are necessary conditions
Jor myp @ mgr to be irreducible over F:

(i) [F(aB) : Fl = mn,

(1) mgr is irreducible over F(cr), and mq r is irreducible over F(j),

(12i) F(e) NF(B) =T,

(i) [F(e, ) : F(a)| = n and [F(e, B) : F(B)| = m

(v) F()F(8) = F(a, B) = F(eB) and F(a, B) = F(a) @r F(B).

Condition (i) is also sufficient.



12 S. P. Glasby

Proof. Consider Figure 1 below. Let D = F(a) NF(B) and d = |D : F|.
Since mg/p is irreducible over F of degree n, |F(3) : F| = n and similarly
|F(«) : F| = m. Therefore |F(«) : D| = m/d and |F(8) : D| = n/d. Since
Mayr(e) divides mq/p, it follows that

‘]F(OA,B) : ]F(ﬁ)| = degma/]F(ﬂ) < deg My/D = |]F(C\£) : D‘ = m/d7

and similarly |F(a, 8) : F(a)| < n/d.

As af is aroot of mq r ®@mg/, it follows that mg/r divides m, /r @mg/p.
Thus mq/r ® mg/p is irreducible if and only if deg mqg/r = mn, or equiva-
lently |F(af) : F| = mn. Hence (i) is both necessary and sufficient.

Suppose henceforth that m,r ® mg/r is irreducible. It follows from
Figure 1 that

mn = |F(apB) : F| < |Fla, 8) : F| < (m/d)(n/d)d = mn/d.

Therefore d = 1, F(a)F(B) = F(e, 8) = F(ap), |Fla, B) : F(a)| = n and
\F(a, 8) : F(B)] = m. To conclude the proof, we note that the F-algebra
homomorphism F(a) ®r F(8) — F(a, ) given by a® 1 — a and &1 +— [

is an isomorphism (as the domain and the codomain have dimension mn).0]

Figure 1. Subfields of F(a, ) and degrees of field extensions
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LEMMA 3.3. (¢) The characteristic polynomial of the F-algebra homomor-
phism F(a) @ F(8) — F(a) @ F(B) : z +— z(a® B) is mar @ mg/p.
(i) The F-algebra homomorphism F(a, B) — F(a, 8) : = — xaf has char-

acteristic polynomial mfﬁ(‘;‘]’f)ﬂ(aﬁ)l.

(i51) If |F() : F||F(B) : F| = |F(a,B) : F|, then Fla) @ F(B) — F(a,p)
given by a ® 1 — «a and 1 ® B — B is an F-algebra isomorphism and
M/ ® Mg 5 = mIOJLFﬁ(C/t],FB):F(aﬂ)I.

Proof. Both (i) and (i7) follow from the fact that the characteristic polyno-
mial of the map F(y) — F(y) given by = +— z is m, p. The map given
in part (¢4¢) is a surjective homomorphism, and by comparing dimensions,
it must be an isomorphism. This isomorphism shows that the maps in (7)
and (7¢) are similar and hence have equal characteristic polynomials. That
i, Mg © maye = ml 0T .
THEOREM 3.4. Let o, 3 € F. Let Mo r be separable over F, and suppose
that it factors over F(B) as mqy/p = H?zl My, /7(3)- Then

d
Mogs @ maye = [[mEG and Fla) 0x ¥(8) = (D Flas, 9
=1 i

Furthermore, the polynomials my, /rp) are distinct and the fields F(ay, B),

i=1,...,d, are separable over F(3).

Proof. Since m,, /y is separable, the polynomials m,,, /r(g) are distinct. Hence
it follows from [HB82, II, 1.4(a)] that

d

F(a) @r F(8) = @ F(os, B),

=1

where the F(«;, 8) are separable over F(/3). A precise description of the above
isomorphism is obtained from the proofs of II, 1.4(a) and (c) in [HB82]. The
images of a ® 1 and 1 ® 8 in F(«;, 8) are «; and [ respectively; and hence
a ® B has image «;8. The factorization of mq,/r ® mg/r now follows from
Lemma 3.3(¢) and (44). O
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THEOREM 3.5. Let o, € F and D = F(a) NTF(B). Suppose that Mo /R
equals H;i:l My, /r(e) and F(a) : F is Galois. Then d equals |D : F| and
divides ged(|F(a) : F|, [F(B) : F|), and mq, k) equals mq,/p and has degree
\F(a, B) : F(B)| = |D(ax) : D| fori=1,...,d.

Proof. Since F(a) : F is Galois, F(a;) = F(a) and hence F(a;, 8) = F(a, B)
for each i. We show below that d equals |D : F|.

Now D(a) = F(a) and D(«) : D is Galois. Furthermore, D(«, ) : D(f)
is Galois with group isomorphic, via restriction, to Gal(D(«) : D). Now
Gal(F(c) : F) acts regularly on the roots of mg,/r and hence so too does
the subgroup Gal(D(a) : D). If A; is the orbit of a root a; of m,/r under
Gal(D(a) : D), then |A;] = [D(a) : D|. Hence m,/p factors over D into
|D : | irreducible polynomials each of degree |D(«) : D|. Moreover, A;3 is
the orbit of ;3 under Gal(D(a, B) : D(B)) 80 My, 5/D(8) = Ma,; /D @ (X —B)
and thus mg,/p = mq,/p(s)- Since D(B) = F(B) it follows that d = [D : F|

and my, /p(p) has degree
|D(ai) : D| = |D(e) : D| = [F(a, B) : F(B)|.

It is clear that d divides ged(|F(«) : F|, [F(3) : ). O

It is worth noting that the polynomials m,, g/, ? =1,...,d, appearing in
Theorem 3.4 need not be distinct even though the m,, /r(g) are distinct. For
example, if « = f is a primitive fifth root of unity and F = Q, then d = 4

and the values of m,,g/r are X — 1, mq/p, Mo r and mg p.

LEMMA 3.6. Let o, 8 € F and let A and B denote the set of roots of Mok
and of mgr respectively. Suppose that F(a) and F(B) are Galois over F
and mq r is irreducible over F(3). Then F(a) ®r F(B) is isomorphic to the
field ¥(a, B). Furthermore, F(a, ) : F is Galois with group isomorphic (as
a permutation group) to Gal(F(«) : F) x Gal(F(83) : F) acting on A x B with

product action.

Proof. It follows from Theorem 3.4 that d = 1 and F(a) ® F(8) = F(«, ).
Then, by Theorem 3.5, F(a) NF(8) = F so all of the assertions hold by [L80,
VIII Theorem 5. O
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We introduce some notation used in Theorem 3.7 below. A positive in-
teger s is called an exponent of a polynomial a if a(X) = b(X?®) for some
polynomial b. If a # ag, then a has a greatest exponent denoted ge(a). This
is a multiple of every exponent of a and equals ged{i |a; # 0}. If a # X™ or
ap and a = a ® (X — p) where p # 0, then the (multiplicative) order of p is
finite and divides ge(a).

Given an abelian group G, let ,,(G) denote the subgroup {g € G | g™ = 1}
of G.

THEOREM 3.7. Suppose that a,8 € F, o, € F and F(a) and F(B) are
Galois over F.

(i) Then F(a, B) and D = F(a)NF(B) are Galois over F, and Gal(F(a, B) : F)
is isomorphic to the pull-back of Gal(F(a) : F) and Gal(F(p3) : F) identifying
Gal(D : ).

(i1) Suppose mqm = H?Zl Mq,/p- Then d = |D :F| and

d
My /F @ Mg /F = H(mai,ﬁ/F)eﬁv

=1

e = |D(a,B) : D(afB)| and f; = |D(e;B) : F(a; B)| for each i. Moreover, e
divides [Qg4(D*)| where g = ged(ge(ma/p), ge(mg/p)), fi divides d and

efidegmq,g/r = (deg mqy r)(degmg/r)/d  for each 1.

Proof. (i) This is a generalization of [L80, VIII Theorem 5] which is pre-
sumably known. Let K; = F(a) and Ky = F(5) be Galois extensions of F
with groups G; and G; respectively. Then the compositum K; Ko = F(a, 8)
is Galois over F and its group, G, is a pull-back of G1 and G4 as described
below. Let m; : G — G; be the epimorphism defined by om; = o|K;.
Let N7 = ker(mp) and Ny = ker(m;). Since Ny N Ny is trivial, the map
0 : G — G1 x Gy defined by 00 = (0|K;,0|Ky) is a monomorphism. It

follows from the Galois correspondence (Figure 2 below)
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F
Figure 2. Galois correspondence and the pull-back G x4 G2

that the fixed field of the normal subgroup Ni N is Ky N Ky, and the Galois
group of K; NKy over F is G/N1Ny = G1 /N = Go/N5 where N = m;(N;)
is isomorphic to N;. Furthermore, the map ¢ : G1/Nf — G2/Nj given by
(0|Ky)NT — (0|Kg)Ny for o € G, is a well-defined isomorphism. But G is
isomorphic to G6, and a little thought shows that G6 equals the pull-back

Gy X Gy = {(0’1,0’2) € G1 x Gy | (0’le)¢ = UZN;}.

(it) Now D(a) : D is Galois and D(a) N D(B) = D, therefore m,/p is irre-
ducible over D(f). Since D(f) : D is also Galois it follows from Lemma 3.6
that D(a) ® D(3) is isomorphic to the field D(a, 8), and m,,p ®mg,p equals
(mqp/p)¢ where e is the order of the stabilizer of af in Gal(D(a, §) : D). If
the element (o, 7) of Gal(D(«) : D) x Gal(D(f) : D) stabilizes a ® 3, then
there exists a p € D* such that aoc = pa and 7 = p~ 5. The map from the
stabilizer of a ® B to D* given by (o,7) — p is a monomorphism, since if
p = 1 then both ¢ and 7 are the identity automorphism. The image of this
homomorphism is cyclic of order e. By the remarks preceding this theorem
e divides g = ged(ge(ma/p), ge(mg,p)) and hence divides [Q2,(D*)|.

By Theorem 3.5, d = |D : F|. By Theorem 3.4

d d
M5 @ Mg /p = H mg(g/iﬁﬂ)ﬂ(aiﬂ)l _ H milg)(/%iﬂ):maiﬁ)l
i=1 i=1
since e = |D(e, B) : D(af)| = |F(ey, B) : D(a;8)| for each i. The remain-
ing claims of the theorem are immediate upon comparing degrees of field

extensions. O



The tensor product of polynomials 17

Suppose that F(a, 8) : F is cyclic (that is, is Galois with a cyclic group).
Then F(a) : F and F(B) : F are also cyclic and it follows from Theo-
rem 3.7(i) that |F(«, 8) : F(a)| and |[F(a, 8) : F(B)| are coprime (otherwise
F(a, B) : F(a) NF(B) is not cyclic). Thus d = ged(m, n) where m = degmq/r
and n = deg mg,r, and by Theorem 3.7(4%), ef; deg mq, g/ = lcm(m, n) holds
for i =1,...,d. It follows from Theorems 3.4 and 3.7(i7) that

ged(m,n)
]qu ®IF ]Fqn = @ ]Fqlcm(m,n)

i=1
(compare with [HB82, 1.4(b)]). Moreover, g divides ged(m/d,n/d) = 1 so
g =e=1and m,r ® mg,r is irreducible if and only if d = 1.

LEMMA 3.8. Let F(a) and F(B) be Galois over F, and suppose P is a normal
p-subgroup of Gal(F(«, ) : F) such that every element of order p in P fizes
a or 3. Then |P| divides degmqgr.

Proof. Since G = Gal(F(a, 8) : F) acts transitively on the roots of mqg/r,
and the orbits of the normal subgroup P have equal size, it suffices to show
that one orbit has |P| elements. This follows if each non-trivial o € P does
not fix aff. Assume without loss of generality that ¢ has order p, and hence
by our assumption ao = « or o = . Assume that o = . Then ao # «a,
otherwise o has order 1, not p. Thus (af)o # af, and assuming that aoc = «

gives the same conclusion. a

More can be said about the integers f; in Theorem 3.7(¢%) in the case when
Gal(F(e, B) : F) is cyclic.

PROPOSITION 3.9. Suppose a, B € F, F(a, B) : F is cyclic and m = deg Mea/F
and n = degmg/r. Suppose that p is prime, and let |m|, denote the largest
power of p dividing m. If mymp = H;izl Mo, /D, where D = F(a) N F(B)
and |m|, # |nl|p, then |D(c,B) : D(af)| = 1, and for each i, |fil, = 1
and max{|m/|y, |n|p,} = |degmq,g/rlp- In particular, if |m|, # |n|, for each
prime divisor p of mn, then mq, /g ®@mg/r is a product of gcd(m, n) irreducible

polynomials over F each of degree lcm(m,n).

Proof. 1t was shown in the remarks preceding Lemma 3.8 that D(a, ) equals
D(apf), d = ged(m,n) and f; degmgy,g/r = lem(m, n). Suppose |m/|, # [n/p.
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Without loss of generality assume |m|, < |n|,. If P; is the Sylow p-subgroup
of Gal(F(e) : F) and P, is the Sylow p-subgroup of Gal(F(8) : F), then
the Sylow p-subgroup of Gal(IF(«, ) : TF) is isomorphic (by 3.7(:)) to the
pull-back

P1 X9 Pg = {(0'1,0'2) € P1 X Pz | (0’1N1)9 = O'QNQ},

where N; is a normal subgroup of P; (i = 1,2) and 6: P,/N; — Py/N>
is an isomorphism. Since P; xg Py is cyclic, it follows that Ny = {1} and
Py xg Py = P;. As any element of P; xg P5 of order p fixes o, Lemma 3.8 shows
that |P,| divides degmg,g/r for each i. Since |P;| = |n|, = [lem(m,n)|p, it
follows from Theorem 3.7(i¢) that |f;|, = 1. Hence if |m|, # |n|, for each
prime divisor p of lem(m,n), then f; = 1 and degmg,g/r = lem(m,n) for
each 1. O

The main idea behind Proposition 3.9 holds more generally. Suppose that
F(a) : F and F(3) : F are Galois and Py, P, are Sylow p-subgroups of the re-
spective Galois groups. A Sylow p-subgroup of Gal(F(«a, 8) : F) is isomorphic
(by Theorem 3.7(%)) to a pull-back Py xg P, where 0: P;/N; — P, /N3 is an
isomorphism. Suppose that each element (o1, 03) of order p in Py xg P3 has
o1 =1 or o3 = 1, or equivalently lies in the subgroup Ny x {1} or {1} x Na.
Then by Lemma 3.8

\Py Xg Py| = max{|P1], | P2} = | degmq,p/F|p

and p does not divide |D(a, 8) : D(af)| or f; for any i.

4. ®-products of binomials and cyclotomic polynomials
In this section we give some examples of how m, ;r ® mg,r factors over F.

LEMMA 4.1. Suppose that F is an arbitrary field, a,b € F are non-zero, and

d = ged(m,n) where m,n are positive integers. Then
(6) (Xm _ a) ® (Xn _ b) — (an/d _ an/dbm/d)d

and (X™ — a) ® (X™ — b) is irreducible over F if and only if X™ — a and

X™ — b are irreducible over F and d = 1.
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Proof. Suppose first that char(F) does not divide mn. Then there exist
Cm, Cn € F with multiplicative orders m and n respectively. Let o, 3 € F be
roots of X™ —a and X™ — b respectively. Then the roots of X™ —a, X™ —b
and (X™ — a) ® (X™ — b) are distinct and have the form a(?,, B¢, aBCE, ¢l
respectively where 1 = 1,...,m and j = 1,...,n. Each of the mn roots
B¢ ¢J has multiplicity d and satisfies (B¢ ¢3)™™/4 = a™/4p™/¢ and so
(6) holds. Consider now the case when char(F) = p divides mn. Let m = rs
and n = tu where r = |m|, and ¢t = |n|,. This case follows from the previous
case by considering
(X* — a/my" @ (X* — pi/tyt

over the field F(al/7,b1/t).

Suppose that (X™ —a)® (X™ —b) is irreducible over F. Then d = 1 and it
follows from the distributive law that both X™ —a and X™ —b are irreducible
over F. Conversely, suppose that X™ — a and X™ — b are irreducible over
F and d = 1. Let M and N be integers satisfying Mm + Nn = 1. Since
(ap)Mm = oMmpal=Nn — (Mp=Ng we see B € F(aB). Similarly, o € F(ap)
so F(a, 8) = F(apB). Hence |F(ap) : F| = mn and by Lemma 3.2, the tensor
product (X™ —a) ® (X™ — b) is irreducible over F. O

It is well-known (see [L80, VIII, Theorem 16|, for example) which bino-
mials are irreducible over F. We remark that if gcd(m,n) = 1, then the
binomial X™" — ¢ can be tensor factored as (X™ — a) ® (X™ — b) where
a=c",b=cM and M, N € Z satisfy Mm + Nn = 1. This follows from (6)

Mm+Nn

as a™b™ =c¢ =c.

Setting a = b =1 in (6) shows that
(Xm . 1) ® (Xn . 1) — (chm(m,n) . 1)gcd(m,n)-

Now X™ —1 =[]

Q into (irreducible) cyclotomic polynomials. Hence []

P, and X" -1 = Hs|n ®, are factorizations over
P, ® &, equals

Ht|lcm(m,n) @de(m’n) and so ®, @, is a product of certain ®; where t divides

r|lm

r|lm, s|n
lem(m,n). This factorization may be determined from the following facts:

(7) P, QP, = D, if ged(r, s) =1,
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while if » and s are powers of the same prime p and r < s, then

(@19 - - ér/p)d)(ﬂ@f(r)_r/p ifr=s,

8 P, @ P, =
(®) ") if r <s.

The proof of (7) is straightforward, and (8) follows by considering the equa-
tion po = 7 where p, o, T are roots of unity of prime power order such that

|p| properly divides |o| (and so |o| = |7|).

Let r =7r1---7r and s = s1--- sk, where r; and s; are powers of p;, and
p1,...,pr are distinct primes. A formula for the factorization over Q of
®,. ® &, into irreducible factors is quite complicated if r; = s; for some 1.

Suppose that r; # s; for each 7. Then

k k
o, @D, = ® (I)ri ® @Si — ® @¢(8Cd(ri,5i)) — (I)¢(ng(7‘7S))
=1

lem(r;,s;) lem(r,s)
=1

(see Proposition 3.9). More generally, if ¢ = t1 - - -t where t; = lem(r;, s;)
when r; # s;, and t; is a proper divisor of r; when r; = s;, then the largest
power of &, dividing @, ® ¥, is ¢(ged(r, s)).
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